Patents by Inventor Alexander J. Naney

Alexander J. Naney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143956
    Abstract: A scan engine for capturing at least one image of an object appearing in an imaging field of view (FOV) is provided that includes an imaging system, illumination system, aiming system, and a first and second chassis. The imaging system includes a lens holder and at least one lens disposed within the lens holder and both a far imaging system and a near imaging system for capturing images across multiple fields of view at different distances. The illumination system and aiming system are physically positioned to provide illumination of a target in the near and/or far fields of view, and provide an aiming pattern to the near and/or far fields of view.
    Type: Application
    Filed: October 2, 2023
    Publication date: May 2, 2024
    Inventors: Vladimir Gurevich, Alexander J. Naney, Carl D. Wittenberg, Michael A. Mottola, Igor Vinogradov, David Tsi Shi, Chinh Tan
  • Publication number: 20240147040
    Abstract: An optical assembly for an autofocus lens system for imaging an object appearing in an imaging field of view (FOV) is provided. The optical assembly includes a compensator lens assembly disposed along an optical axis, with the compensator lens assembly configured to receive light along the optical axis and to provide tuning of a flange focal length of the optical assembly. A variable focus assembly, including a variable focus optical element, is disposed along the optical axis to receive light from the compensator lens assembly. The variable focus optical element has a tunable focal plane. A fixed focus optical group is disposed along the optical axis to receive light from the variable focus assembly, the fixed focus optical group is configured to focus the light at the flange focal length of the optical assembly.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Inventors: Alexander J. Naney, Igor Vinogradov, Carl D. Wittenberg, David Tsi Shi, Vladimir Gurevich
  • Publication number: 20240127014
    Abstract: A data processing device is provided that includes an enclosure, a circuit board, a data capture assembly, a sound generator housing, and a sound generator. The enclosure has an internal cavity in which the circuit board is disposed. The sound generator housing is operably coupled with the circuit board and includes at least one wall having at least one sound port and extending upwardly from the circuit board to form a sound chamber. The sound generator is operably coupled with the circuit board and is at least partially disposed within the sound chamber to generate a sound at a resonant frequency. The sound generator housing is dimensioned to amplify the resonant frequency of the sound generator and port the generated sound to the internal cavity of the enclosure.
    Type: Application
    Filed: December 26, 2023
    Publication date: April 18, 2024
    Inventor: Alexander J. Naney
  • Patent number: 11853840
    Abstract: A barcode reader assembly for capturing at least one object appearing in a field of view (FOV) is provided that includes a reader enclosure, a circuit board to capture and decode the image, an imaging system, a sound generator housing, and a sound generator. The reader enclosure has an internal cavity in which the circuit board is disposed. The sound generator housing is operably coupled with the circuit board and includes at least one wall having at least one sound port and extending upwardly from the circuit board to form a sound chamber. The sound generator is operably coupled with the circuit board and is at least partially disposed within the sound chamber to generate a sound at a resonant frequency. The sound generator housing is dimensioned to amplify the resonant frequency of the sound generator and port the generated sound to the internal cavity of the reader enclosure.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 26, 2023
    Assignee: Zebra Technologies Corporation
    Inventor: Alexander J. Naney
  • Patent number: 11775783
    Abstract: A scan engine for capturing at least one image of an object appearing in an imaging field of view (FOV) is provided that includes an imaging system, illumination system, aiming system, and a first and second chassis. The imaging system includes a lens holder and at least one lens disposed within the lens holder and both a far imaging system and a near imaging system for capturing images across multiple fields of view at different distances. The illumination system and aiming system are physically positioned to provide illumination of a target in the near and/or far fields of view, and provide an aiming pattern to the near and/or far fields of view.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: October 3, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Vladimir Gurevich, Alexander J. Naney, Carl D. Wittenberg, Michael A. Mottola, Igor Vinogradov, David Tsi Shi, Chinh Tan
  • Patent number: 11719904
    Abstract: Optical arrangements for small size wide angle auto focus imaging lens for high resolution sensors are disclosed herein. An example optical assembly includes a first lens holder, a second lens holder, a first lens group, a biasing element, and a variable focus optical element. The first lens holder includes a collar having an internal flange forming a spring seat and the first lens group is disposed within the first lens holder. The second lens holder includes a collar defining a chamber and is coupled to the collar of the first lens holder. The variable focus optical element is disposed within the chamber of the second lens holder and the biasing element is disposed within the chamber of the second lens holder between the spring seat and the variable focus optical element and configured to apply a threshold force to the variable focus optical element.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 8, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Alexander J. Naney, Igor Vinogradov
  • Publication number: 20230244056
    Abstract: A barcode reader, an imaging engine, and an optical assembly and method for assembling such to maintain stability through physical shock and to control decentration are disclosed herein. An example optical assembly includes an actuator, adjustable lens group, and rear lens group. The actuator includes an inner carriage, wherein one or more inner walls of the inner carriage are at least partially threaded. The adjustable lens group includes a first lens element, wherein the first lens element is threaded and held in place by the at least partially threaded one or more inner walls of the inner carriage, and a second lens element, wherein the second lens element is coupled to the first lens element, and further wherein the second lens element is fixedly co-located to the first lens element. The front lens group is actively aligned to the rear lens group, which includes one or more fixed optical elements.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Inventor: Alexander J. Naney
  • Publication number: 20210373274
    Abstract: Optical arrangements for small size wide angle auto focus imaging lens for high resolution sensors are disclosed herein. An example optical assembly includes a first lens holder, a second lens holder, a first lens group, a biasing element, and a variable focus optical element. The first lens holder includes a collar having an internal flange forming a spring seat and the first lens group is disposed within the first lens holder. The second lens holder includes a collar defining a chamber and is coupled to the collar of the first lens holder. The variable focus optical element is disposed within the chamber of the second lens holder and the biasing element is disposed within the chamber of the second lens holder between the spring seat and the variable focus optical element and configured to apply a threshold force to the variable focus optical element.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Alexander J. Naney, Igor Vinogradov
  • Publication number: 20210263290
    Abstract: A method and apparatus for capturing an image of at least one object appearing in a field of view (FOV). A housing has an image sensor an autofocusing lens assembly fixedly mounted relative thereto. The autofocusing lens assembly employs multiple lens groups and a liquid lens. The lens groups, liquid lens, and the image sensor are aligned such that light received within the FOV passes through the lens groups and liquid lens and impinges onto the image sensor. The image sensor generates an electrical signal indicative of the received image.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 26, 2021
    Inventors: Igor Vinogradov, Alexander J. Naney
  • Publication number: 20210133409
    Abstract: A barcode reader assembly for capturing at least one object appearing in a field of view (FOV) is provided that includes a reader enclosure, a circuit board to capture and decode the image, an imaging system, a sound generator housing, and a sound generator. The reader enclosure has an internal cavity in which the circuit board is disposed. The sound generator housing is operably coupled with the circuit board and includes at least one wall having at least one sound port and extending upwardly from the circuit board to form a sound chamber. The sound generator is operably coupled with the circuit board and is at least partially disposed within the sound chamber to generate a sound at a resonant frequency. The sound generator housing is dimensioned to amplify the resonant frequency of the sound generator and port the generated sound to the internal cavity of the reader enclosure.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 6, 2021
    Inventor: Alexander J. Naney