Patents by Inventor Alexander J. Rovnan

Alexander J. Rovnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8878447
    Abstract: A load control device, such as an electronic ballast, for controlling the power delivered from an AC power source to an electrical load, such as one or more fluorescent lamps, comprises a power converter having an inductor and a power switching device coupled to the inductor, a load control circuit adapted to be coupled to the electrical load, and a control circuit operable to calculate an average input power of the load control device. The control circuit may be operable to calculate a cumulative output power of the power converter while the ballast is preheating filaments of the lamps, and to subsequently determine a fault condition in the lamps in response to the calculated cumulative output power of the power converter. Further, the control circuit may be operable to transmit a digital message including the calculated average input power of the load control device.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: November 4, 2014
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Venkatesh Chitta, Jonathan Robert Quayle, Alexander J. Rovnan, Mark S. Taipale, Dragan Veskovic
  • Publication number: 20140091722
    Abstract: A load control device, such as an electronic ballast, for controlling the power delivered from an AC power source to an electrical load, such as one or more fluorescent lamps, comprises a power converter having an inductor and a power switching device coupled to the inductor, a load control circuit adapted to be coupled to the electrical load, and a control circuit operable to calculate an average input power of the load control device. The control circuit may be operable to calculate a cumulative output power of the power converter while the ballast is preheating filaments of the lamps, and to subsequently determine a fault condition in the lamps in response to the calculated cumulative output power of the power converter. Further, the control circuit may be operable to transmit a digital message including the calculated average input power of the load control device.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Inventors: Venkatesh Chitta, Jonathan Robert Quayle, Alexander J. Rovnan, Mark S. Taipale, Dragan Veskovic
  • Patent number: 8629624
    Abstract: A load control device, such as an electronic ballast, for controlling the power delivered from an AC power source to an electrical load, such as one or more fluorescent lamps, comprises a power converter having an inductor and a power switching device coupled to the inductor, a load control circuit adapted to be coupled to the electrical load, and a control circuit operable to calculate an average input power of the load control device. The control circuit may be operable to calculate a cumulative output power of the power converter while the ballast is preheating filaments of the lamps, and to subsequently determine a fault condition in the lamps in response to the calculated cumulative output power of the power converter. Further, the control circuit may be operable to transmit a digital message including the calculated average input power of the load control device.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Venkatesh Chitta, Jonathan Robert Quayle, Alexander J. Rovnan, Mark S. Taipale, Dragan Veskovic
  • Publication number: 20120043900
    Abstract: A load control device, such as an electronic ballast, for controlling the power delivered from an AC power source to an electrical load, such as one or more fluorescent lamps, comprises a power converter having an inductor and a power switching device coupled to the inductor, a load control circuit adapted to be coupled to the electrical load, and a control circuit operable to calculate an average input power of the load control device. The control circuit may be operable to calculate a cumulative output power of the power converter while the ballast is preheating filaments of the lamps, and to subsequently determine a fault condition in the lamps in response to the calculated cumulative output power of the power converter. Further, the control circuit may be operable to transmit a digital message including the calculated average input power of the load control device.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 23, 2012
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: Venkatesh Chitta, Jonathan Robert Quayle, Alexander J. Rovnan, Mark S. Taipale, Dragan Veskovic
  • Patent number: 7528554
    Abstract: A boost converter for an electronic dimming ballast for driving a gas discharge lamp has an increased output power range. The boost converter operates in discontinuous conduction mode when a desired intensity of the lamp is below a first threshold intensity, and operates in critical conduction mode when the desired intensity is above a second threshold intensity. The boost converter comprises a delay circuit for introducing an amount of delay into the conduction of current through the boost converter. A control circuit of the ballast is operable to drive the delay circuit and thus control the operation of the boost converter in response to the desired intensity of the lamp. The control circuit is further operable to drive the delay circuit with a pulse-width modulated signal to provide multiple amounts of delay into the operation of the boost converter.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: May 5, 2009
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Venkatesh Chitta, Alexander J. Rovnan
  • Publication number: 20080278086
    Abstract: A boost converter for an electronic dimming ballast for driving a gas discharge lamp has an increased output power range. The boost converter operates in discontinuous conduction mode when a desired intensity of the lamp is below a first threshold intensity, and operates in critical conduction mode when the desired intensity is above a second threshold intensity. The boost converter comprises a delay circuit for introducing an amount of delay into the conduction of current through the boost converter. A control circuit of the ballast is operable to drive the delay circuit and thus control the operation of the boost converter in response to the desired intensity of the lamp. The control circuit is further operable to drive the delay circuit with a pulse-width modulated signal to provide multiple amounts of delay into the operation of the boost converter.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 13, 2008
    Inventors: Venkatesh Chitta, Alexander J. Rovnan