Patents by Inventor Alexander Jansen
Alexander Jansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250118563Abstract: One or more embodiments of the disclosure are directed to methods of forming structures that are useful for FEOL and BEOL processes. Embodiments of the present disclosure advantageously provide methods of depositing a gapfill material, such as titanium nitride (TiN), in high aspect ratio (AR) structures with small dimensions. Some embodiments advantageously provide seam-free high-quality TiN films to fill high AR trenches with small dimensions. Embodiments of the present disclosure advantageously provide methods of filling 3D structures, such as FinFETs, GAAs, and the like, with a gapfill material without creating a seam. One or more embodiments include selective deposition processes using a carbon (C) layer in order to provide seam-free TiN gapfill in 3D structures, such as GAA devices.Type: ApplicationFiled: October 6, 2023Publication date: April 10, 2025Applicant: Applied Materials, Inc.Inventors: Yongjing Lin, Zhihui Liu, Shih Chung Chen, Haoyan Sha, Alexander Jansen, Zhebo Chen, Janardhan Devrajan, Tza-Jing Gung
-
Publication number: 20250046600Abstract: One or more embodiments of the disclosure are directed to methods of forming structures that are useful for FEOL and BEOL processes. Embodiments of the present disclosure advantageously provide methods of depositing titanium nitride (TiN) in high aspect ratio (AR) structures with small dimensions. Some embodiments advantageously provide seam-free high-quality TiN films to fill high AR trenches with small dimensions. Embodiments of the present disclosure advantageously provide methods of filling 3D structures, such as finFETs, GAAs, and the like, without creating a seam. The methods include selective deposition processes using blocking compounds in order to provide seam-free TiN gapfill in 3D structures, such as GAA devices.Type: ApplicationFiled: July 31, 2023Publication date: February 6, 2025Applicant: Applied Materials, Inc.Inventors: Muthukumar Kaliappan, Zhebo Chen, Michael Haverty, Yongjing Lin, Shih Chung Chen, Gang Shen, Alexander Jansen, Janardhan Devrajan
-
Patent number: 12183631Abstract: Methods for forming interconnects on a substrate with low resistivity and high dopant interfaces. In some embodiments, a method includes depositing a first copper layer with a dopant with a first dopant content of 0.5 percent to 10 percent in the interconnect by sputtering a first copper-based target at a first temperature of zero degrees Celsius to 200 degrees Celsius, annealing the substrate at a second temperature of 200 degrees Celsius to 400 degrees Celsius to reflow the first copper layer, depositing a second copper layer with the dopant with a second dopant content of zero percent to 0.5 percent by sputtering a second copper-based target at the first temperature of zero degrees Celsius to 200 degrees Celsius, and annealing the substrate at a third temperature of 200 degrees Celsius to 400 degrees Celsius to reflow the second copper layer.Type: GrantFiled: June 14, 2022Date of Patent: December 31, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Suketu Parikh, Alexander Jansen, Joung Joo Lee, Lequn Liu
-
Publication number: 20240183028Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.Type: ApplicationFiled: February 15, 2024Publication date: June 6, 2024Inventors: Xiangjin XIE, Carmen LEAL CERVANTES, Feng CHEN, Lu CHEN, Wenjing XU, Aravind KAMATH, Cheng-Hsiung Matthew TSAI, Tae Hong HA, Alexander JANSEN, Xianmin TANG
-
Patent number: 11955382Abstract: Methods and apparatus for forming a reverse selective etch stop layer are disclosed. Some embodiments of the disclosure provide interconnects with lower resistance than methods which utilize non-selective (e.g., blanket) etch stop layers. Some embodiments of the disclosure utilize reverse selective etch stop layers within a subtractive etch scheme. Some embodiments of the disclosure selectively deposit the etch stop layer by passivating the surface of the metal material.Type: GrantFiled: December 3, 2020Date of Patent: April 9, 2024Assignee: Applied Materials, Inc.Inventors: Kevin Kashefi, Alexander Jansen, Mehul Naik, He Ren, Lu Chen, Feng Chen
-
Patent number: 11939666Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.Type: GrantFiled: June 1, 2020Date of Patent: March 26, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Xiangjin Xie, Carmen Leal Cervantes, Feng Chen, Lu Chen, Wenjing Xu, Aravind Kamath, Cheng-Hsiung Matthew Tsai, Tae Hong Ha, Alexander Jansen, Xianmin Tang
-
Patent number: 11891690Abstract: A method of forming a molybdenum film by oxidation and reduction is disclosed. A molybdenum oxide film is formed by CVD or ALD using a halide free organometallic molybdenum precursor. The molybdenum oxide film contains low amounts of carbon impurities. The molybdenum oxide film is reduced to form a highly pure molybdenum film. The molybdenum film has low resistance and properties similar to bulk molybdenum.Type: GrantFiled: August 11, 2020Date of Patent: February 6, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Feng Q. Liu, Alexander Jansen, Mark Saly
-
Patent number: 11776805Abstract: Method for selectively oxidizing the dielectric surface of a substrate surface comprising a dielectric surface and a metal surface are discussed. Method for cleaning a substrate surface comprising a dielectric surface and a metal surface are also discussed. The disclosed methods oxidize the dielectric surface and/or clean the substrate surface using a plasma generated from hydrogen gas and oxygen gas. The disclosed method may be performed in a single step without the use of separate competing oxidation and reduction reactions. The disclosed methods may be performed at a constant temperature and/or within a single processing chamber.Type: GrantFiled: March 10, 2021Date of Patent: October 3, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Bencherki Mebarki, Joung Joo Lee, Yi Xu, Yu Lei, Xianmin Tang, Kelvin Chan, Alexander Jansen, Philip A. Kraus
-
Patent number: 11756784Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.Type: GrantFiled: July 5, 2022Date of Patent: September 12, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Carmen Leal Cervantes, Alexander Jansen, Xiangjin Xie
-
Patent number: 11692262Abstract: Apparatus and methods for controlling plasma profiles during PVD deposition processes are disclosed. Some embodiments utilize EM coils placed above the target to control the plasma profile during deposition.Type: GrantFiled: July 16, 2020Date of Patent: July 4, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Alexander Jansen, Keith A. Miller, Prashanth Kothnur, Martin Riker, David Gunther, Emily Schooley
-
Publication number: 20230005844Abstract: Interconnect structures on a substrate have low resistivity and high dopant interfaces. In some embodiments, the structures may have an opening with a sidewall from an upper surface to an underlying metallic layer of copper, a barrier layer of tantalum nitride formed on the sidewall of the opening, a liner layer of cobalt or ruthenium formed on the barrier layer and on the underlying metallic layer, a first copper layer with a dopant with a first dopant content formed on the liner layer and filling a lower portion of the opening to form a via-the first dopant content is approximately 0.5 percent to approximately 10 percent, and a second copper layer with the dopant with a second dopant content formed on the first copper layer and filling the at least one opening—the second dopant content is more than zero to approximately 0.5 percent of the dopant and is less than the first dopant content.Type: ApplicationFiled: June 14, 2022Publication date: January 5, 2023Inventors: Suketu PARIKH, Alexander JANSEN, Joung Joo LEE, Lequn LIU
-
Publication number: 20230005789Abstract: Methods for forming interconnects on a substrate with low resistivity and high dopant interfaces. In some embodiments, a method includes depositing a first copper layer with a dopant with a first dopant content of 0.5 percent to 10 percent in the interconnect by sputtering a first copper-based target at a first temperature of zero degrees Celsius to 200 degrees Celsius, annealing the substrate at a second temperature of 200 degrees Celsius to 400 degrees Celsius to reflow the first copper layer, depositing a second copper layer with the dopant with a second dopant content of zero percent to 0.5 percent by sputtering a second copper-based target at the first temperature of zero degrees Celsius to 200 degrees Celsius, and annealing the substrate at a third temperature of 200 degrees Celsius to 400 degrees Celsius to reflow the second copper layer.Type: ApplicationFiled: June 14, 2022Publication date: January 5, 2023Inventors: Suketu PARIKH, Alexander JANSEN, Joung Joo LEE, Lequn LIU
-
Publication number: 20220341029Abstract: Apparatus and methods for controlling plasma profiles during PVD deposition processes are disclosed. Some embodiments utilize EM coils placed above the target to control the plasma profile during deposition.Type: ApplicationFiled: July 11, 2022Publication date: October 27, 2022Applicant: Applied Materials, Inc.Inventors: Alexander Jansen, Keith A. Miller, Prashanth Kothnur, Martin Riker, David Gunther, Emily Schooley
-
Publication number: 20220336207Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.Type: ApplicationFiled: July 5, 2022Publication date: October 20, 2022Inventors: Carmen LEAL CERVANTES, Alexander JANSEN, Xiangjin XIE
-
Patent number: 11443936Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.Type: GrantFiled: June 19, 2020Date of Patent: September 13, 2022Assignee: APPLIED MATERIALS, INC.Inventors: Carmen Leal Cervantes, Alexander Jansen, Xiangjin Xie
-
Publication number: 20220181204Abstract: Methods and apparatus for forming a reverse selective etch stop layer are disclosed. Some embodiments of the disclosure provide interconnects with lower resistance than methods which utilize non-selective (e.g., blanket) etch stop layers. Some embodiments of the disclosure utilize reverse selective etch stop layers within a subtractive etch scheme. Some embodiments of the disclosure selectively deposit the etch stop layer by passivating the surface of the metal material.Type: ApplicationFiled: December 3, 2020Publication date: June 9, 2022Applicant: Applied Materials, Inc.Inventors: Kevin Kashefi, Alexander Jansen, Mehul Naik, He Ren, Lu Chen, Feng Chen
-
Publication number: 20210398798Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.Type: ApplicationFiled: June 19, 2020Publication date: December 23, 2021Inventors: Carmen LEAL CERVANTES, Alexander JANSEN, Xiangjin XIE
-
Publication number: 20210371972Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.Type: ApplicationFiled: June 1, 2020Publication date: December 2, 2021Inventors: Xiangjin XIE, Carmen LEAL CERVANTES, Feng CHEN, Lu CHEN, Wenjing XU, Aravind KAMATH, Cheng-Hsiung Matthew TSAI, Tae Hong HA, Alexander JANSEN, Xianmin TANG
-
Publication number: 20210287898Abstract: Method for selectively oxidizing the dielectric surface of a substrate surface comprising a dielectric surface and a metal surface are discussed. Method for cleaning a substrate surface comprising a dielectric surface and a metal surface are also discussed. The disclosed methods oxidize the dielectric surface and/or clean the substrate surface using a plasma generated from hydrogen gas and oxygen gas. The disclosed method may be performed in a single step without the use of separate competing oxidation and reduction reactions. The disclosed methods may be performed at a constant temperature and/or within a single processing chamber.Type: ApplicationFiled: March 10, 2021Publication date: September 16, 2021Applicant: Applied Materials, IncInventors: Bencherki Mebarki, Joung Joo Lee, Yi Xu, Yu Lei, Xianmin Tang, Kelvin Chan, Alexander Jansen, Philip A. Kraus
-
Patent number: 11056325Abstract: A movable substrate support with a top surface for holding a substrate, when present, is used in conjunction with a cover ring that is stationary to adjust for a shadow effect to control substrate edge uniformity during deposition processes. The cover ring is held stationary by an electrically isolated spacer that engages with a grounded shield in the process volume of a semiconductor process chamber. A controller adjusts the substrate support in response to deposition material on a top surface of the cover ring to maintain the shadow effect and substrate edge uniformity.Type: GrantFiled: December 11, 2018Date of Patent: July 6, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Thanh X. Nguyen, Alexander Jansen, Yana Cheng, Randal Schmieding, Yong Cao, Xianmin Tang, William Johanson