Patents by Inventor Alexander Jubner

Alexander Jubner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200089326
    Abstract: A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 10534479
    Abstract: A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: January 14, 2020
    Assignee: Neonode Inc.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 10496180
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Grant
    Filed: February 18, 2018
    Date of Patent: December 3, 2019
    Assignee: Neonode, Inc.
    Inventors: Björn Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Simon Greger Fellin, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Tom Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Bertil Hagberg, Joel Verner Rozada
  • Publication number: 20190258389
    Abstract: A vehicle user interface including a vehicle steering wheel including a grip, a sensor mounted in the steering wheel grip detecting objects touching the steering wheel grip, a plurality of individually activatable illumination units illuminating respective locations on the steering wheel grip, and a processor receiving outputs from the sensor, selectively activating a subset of the illumination units adjacent to a detected object, and controlling a plurality of vehicle functions in response to outputs of the sensor.
    Type: Application
    Filed: March 26, 2019
    Publication date: August 22, 2019
    Inventors: Alexander Jubner, Thomas Eriksson, Gunnar Martin Fröjdh, Simon Fellin, Stefan Holmgren
  • Publication number: 20190220149
    Abstract: A sensor including optics configured in accordance with a display that presents a GUI, the optics projecting the GUI above the display such that the GUI is visible in-air, a reflectance sensor including light emitters projecting light beams towards the projected GUI, light detectors detecting reflections of the beams by objects interacting with the projected GUI, and a lens maximizing detection of light at each detector for light entering the lens at a respective location along the lens at a specific angle ?, whereby for each emitter-detector pair, maximum detection of light projected by the emitter of the pair, reflected by an object and detected by the detector of the pair, corresponds to the object being at a specific 2D location in the projected GUI, and a processor mapping detections of light for emitter-detector pairs to their corresponding 2D locations, and translating the mapped locations to display coordinates.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Patent number: 10282034
    Abstract: A touch system with a curved touch surface, including light emitters projecting light beams over and across the curved surface, such that at least some of the light beams are incident upon and reflected by the curved surface, light detectors detecting reflections, by a reflective object touching the curved surface, lenses mounted such that (i) there is a particular angle of entry at which each light detector receives a maximal light intensity, and (ii) there are target positions, associated with emitter-detector pairs, on the curved surface, whereby light beams emitted by the light emitter of that pair are reflected by the object into the lens corresponding to the light detector of that pair at the particular angle of entry, and a processor calculating a location of the object touching the curved surface by determining an emitter-detector pair that detects a maximal amount of light, and identifying the associated target position.
    Type: Grant
    Filed: May 7, 2017
    Date of Patent: May 7, 2019
    Assignee: Neonode Inc.
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Patent number: 10254943
    Abstract: A user interface for a vehicle, including a steering wheel for the vehicle, including a grip, a sensor operable to detect objects at a plurality of locations along the grip, and an illuminator operable to illuminate different portions of the grip, a processor in communication with the sensor, with the illuminator and with a controller of vehicle functions, and a non-transitory computer readable medium storing instructions which cause the processor to identify, via the sensor, a location of a first object along the grip, to illuminate, via the illuminator, a portion of the grip, adjacent to the identified location, to further identify, via the sensor, a second object being at the illuminated portion of the grip, and to activate, via the controller, a vehicle function in response to the second object being at the illuminated portion of the grip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 9, 2019
    Assignee: Neonode Inc.
    Inventors: Alexander Jubner, Thomas Eriksson, Gunnar Martin Fröjdh, Simon Fellin, Stefan Holmgren
  • Publication number: 20180296915
    Abstract: A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
    Type: Application
    Filed: May 25, 2018
    Publication date: October 18, 2018
    Inventors: Stefan Holmgren, Sairam Iyer, Richard Berglind, Karl Erik Patrik Nordström, Lars Sparf, Per Rosengren, Erik Rosengren, John Karlsson, Thomas Eriksson, Alexander Jubner, Remo Behdasht, Simon Fellin, Robin Kjell Åman, Joseph Shain
  • Publication number: 20180181209
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Application
    Filed: February 18, 2018
    Publication date: June 28, 2018
    Inventors: Björn Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Simon Greger Fellin, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Tom Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Bertil Hagberg, Joel Verner Rozada
  • Patent number: 10004985
    Abstract: A system including two handheld electronic devices, each device including a housing, a communicator mounted in the housing continuously receiving images from an internet server, a display mounted in the housing, and a sensor mounted in the housing and connected to the communicator, configured to detect sizes of objects in an adjacent detection zone, and including an analyzer recognizing the other handheld electronic device when the sensor detects that an object in the adjacent detection zone is as long as an edge of the housing, wherein the server receives outputs from the analyzer and partitions each of the images into two half-images, and continuously transmits one of each half-image to the handheld electronic device and the other of each half-image to the other handheld device, such that each full image spans the two device displays.
    Type: Grant
    Filed: October 11, 2015
    Date of Patent: June 26, 2018
    Assignee: Neonode Inc.
    Inventors: Stefan Holmgren, Sairam Iyer, Richard Berglind, Karl Erik Patrik Nordström, Lars Sparf, Per Rosengren, Erik Rosengren, John Karlsson, Thomas Eriksson, Alexander Jubner, Remo Behdasht, Simon Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 9921661
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: March 20, 2018
    Assignee: Neonode Inc.
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Rosengren, Xiatao Wang, Stefan Holmgren, Gunnar Martin Fröjdh, Simon Fellin, Jan Tomas Hartman, Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Berglind, Karl Erik Patrik Nordström, Lars Sparf, Erik Rosengren, John Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Hagberg, Joel Rozada
  • Publication number: 20170308281
    Abstract: A user interface for a vehicle, including a steering wheel for the vehicle, including a grip, a sensor operable to detect objects at a plurality of locations along the grip, and an illuminator operable to illuminate different portions of the grip, a processor in communication with the sensor, with the illuminator and with a controller of vehicle functions, and a non-transitory computer readable medium storing instructions which cause the processor: to identify, via the sensor, a location of a first object along the grip, to illuminate, via the illuminator, a portion of the grip, adjacent to the identified location, to further identify, via the sensor, a second object being at the illuminated portion of the grip, and to activate, via the controller, a vehicle function in response to the second object identified as being at the illuminated portion of the grip.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 26, 2017
    Inventors: Alexander Jubner, Thomas Eriksson, Gunnar Martin Fröjdh, Simon Fellin, Stefan Holmgren
  • Publication number: 20170262134
    Abstract: A flexible touch surface, emitters projecting light beams across the surface such that the beams are incident upon and reflected by the surface when crossing the surface, detectors detecting reflections, by an object on the surface, of projected beams, lenses oriented such that there is a particular angle of entry at which each detector receives a maximal light intensity when beams enter a lens corresponding to the detector at the angle of entry, and such that there are target positions on the surface whereby for each emitter-detector pair, when the object is located at a target position associated with the pair, then light beams emitted by the emitter of the pair are reflected by the object into the lens corresponding to the detector of the pair at the angle of entry, and a processor synchronously co-activating emitter-detector pairs and calculating a location of the object on the surface.
    Type: Application
    Filed: May 7, 2017
    Publication date: September 14, 2017
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Patent number: 9710144
    Abstract: A computer readable medium storing instructions which cause a processor to generate data structures for an object moving along the perimeter of a curved touch-sensitive user input device, each data structure corresponding to a gesture and including a time stamp, polar angles at which the object starts and ends, a middle polar angle of the object, and an assigned state being one of the group RECOGNIZED, UPDATED and ENDED, wherein the instructions cause the processor to assign the RECOGNIZED state to the data structure when the moving object is initially detected on the perimeter of the device, to assign the UPDATED state to the data structure when the moving object is further detected on the perimeter of the device after the initial detection, and to assign the ENDED state to the data structure when the moving object ceases to be detected on the perimeter of the device.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: July 18, 2017
    Assignee: Neonode Inc.
    Inventors: Alexander Jubner, Thomas Eriksson, Gunnar Martin Fröjdh, Simon Fellin, Stefan Holmgren
  • Patent number: 9645679
    Abstract: A touch screen assembly including a display, infra-red light emitters, photo diodes, a transparent frame including an exposed upper edge along its perimeter, and internally reflective facets for directing light emitted by the emitters along light paths that travel upward through one side of the frame, over the display screen, downward through the opposite side of the frame, and onto the photo diodes, and a processor operative to identify a location of an object touching the display, based on amounts of light detected by photo diodes when light emitted by light emitters is blocked along its light path by the object, and to recognize the object touching an outer wall of the frame, based on amounts of light detected by activated photo diodes when light emitted by activated emitters is absorbed along its light path by the object at the outer wall, thereby providing touch sensitivity to the frame itself.
    Type: Grant
    Filed: December 5, 2015
    Date of Patent: May 9, 2017
    Assignee: Neonode Inc.
    Inventors: Thomas Eriksson, Alexander Jubner, John Karlsson, Lars Sparf, Saska Lindfors, Robert Pettersson
  • Publication number: 20160154475
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Application
    Filed: January 19, 2016
    Publication date: June 2, 2016
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Rosengren, Xiatao Wang, Stefan Holmgren, Gunnar Martin Fröjdh, Simon Fellin, Jan Tomas Hartman, Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Berglind, Karl Erik Patrik Nordström, Lars Sparf, Erik Rosengren, John Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Hagberg, Joel Rozada
  • Publication number: 20160154533
    Abstract: A touch screen assembly including a display, infra-red light emitters, photo diodes, a transparent frame including an exposed upper edge along its perimeter, and internally reflective facets for directing light emitted by the emitters along light paths that travel upward through one side of the frame, over the display screen, downward through the opposite side of the frame, and onto the photo diodes, and a processor operative to identify a location of an object touching the display, based on amounts of light detected by photo diodes when light emitted by light emitters is blocked along its light path by the object, and to recognize the object touching an outer wall of the frame, based on amounts of light detected by activated photo diodes when light emitted by activated emitters is absorbed along its light path by the object at the outer wall, thereby providing touch sensitivity to the frame itself.
    Type: Application
    Filed: December 5, 2015
    Publication date: June 2, 2016
    Inventors: Thomas Eriksson, Alexander Jubner, John Karlsson, Lars Sparf, Saska Lindfors, Robert Pettersson
  • Publication number: 20160067602
    Abstract: A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.
    Type: Application
    Filed: October 11, 2015
    Publication date: March 10, 2016
    Inventors: Stefan Holmgren, Sairam Iyer, Richard Berglind, Karl Erik Patrik Nordström, Lars Sparf, Per Rosengren, Erik Rosengren, John Karlsson, Thomas Eriksson, Alexander Jubner, Remo Behdasht, Simon Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: D776665
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: January 17, 2017
    Assignee: Neonode Inc.
    Inventors: John Karlsson, Lars Sparf, Alexander Jubner, Thomas Eriksson
  • Patent number: D776666
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: January 17, 2017
    Assignee: Neonode Inc.
    Inventors: John Karlsson, Lars Sparf, Alexander Jubner, Thomas Eriksson