Patents by Inventor Alexander Kalnitsky

Alexander Kalnitsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11675383
    Abstract: Voltage reference circuits are provided. A voltage reference circuit includes a transistor, a flipped-gate transistor, a first current mirror unit, a second current mirror unit and an output node. The gate and the drain of the flipped-gate transistor are coupled to the gate and the drain of the transistor. The first current mirror unit is configured to provide a first current to the flipped-gate transistor and the mirroring current in response to a bias current. The second current mirror unit is configured to drain a second current from the transistor in response to the mirroring current. The output node is coupled to the source of the transistor and the second current mirror unit, and is configured to output a reference voltage.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Ting Wang, Alan Roth, Eric Soenen, Alexander Kalnitsky, Liang-Tai Kuo, Hsin-Li Cheng
  • Patent number: 11646308
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a second IC die is bonded to a first IC die. A seal-ring structure is arranged in a peripheral region of the 3D IC in the first IC die and the second IC die. The seal-ring structure extends from a first semiconductor substrate of the first IC die to a second semiconductor substrate of the second IC die. A plurality of through silicon via (TSV) coupling structures is arranged at the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure closer to the 3D IC than the seal-ring structure. The plurality of TSV coupling structures respectively comprises a TSV disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: May 9, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen
  • Publication number: 20230081170
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander KALNITSKY, Yi-Shao LIU, Kai-Chih LIANG, Chia-Hua CHU, Chun-Ren CHENG, Chun-Wen CHENG
  • Patent number: 11600661
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a substrate, a transistor region, a metal interconnect, and a magnetic tunneling junction (MTJ). The transistor region includes a gate over the substrate, and a doped region is at least partially in the substrate. The metal interconnect is over the doped region. The metal interconnect includes a metal via. The MTJ is entirely underneath the metal interconnect and between the doped region and the metal via, and a diameter of a bottom surface of the MTJ is greater than a diameter of an upper surface of the MTJ.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Harry-Hak-Lay Chuang, Sheng-Haung Huang, Tien-Wei Chiang
  • Publication number: 20230067962
    Abstract: A semiconductor device includes a substrate, an isolation structure, a conductive structure, and a first contact structure. The isolation structure is disposed in the substrate. The conductive structure is disposed on the isolation structure. The conductive structure extends upwards from the isolation structure, in which the first contact structure has a top portion on the conductive structure and a bottom portion in contact with the isolation structure.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alexander KALNITSKY, Wei-Cheng WU, Harry-Hak-Lay CHUANG, Chia Wen LIANG, Li-Feng TENG
  • Patent number: 11594484
    Abstract: A method includes forming a first dielectric layer over a conductive pad, forming a second dielectric layer over the first dielectric layer, and etching the second dielectric layer to form a first opening, with a top surface of the first dielectric layer exposed to the first opening. A template layer is formed to fill the first opening. A second opening is then formed in the template layer and the first dielectric layer, with a top surface of the conductive pad exposed to the second opening. A conductive pillar is formed in the second opening.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mirng-Ji Lii, Chung-Shi Liu, Chin-Yu Ku, Hung-Jui Kuo, Alexander Kalnitsky, Ming-Che Ho, Yi-Wen Wu, Ching-Hui Chen, Kuo-Chio Liu
  • Patent number: 11581308
    Abstract: A method for manufacturing a semiconductor structure is provided, wherein the method includes the following operations. A substrate having a transistor is received, wherein the transistor includes a channel region and a gate on a first side of the channel region. A second side of the channel region of the transistor is exposed, wherein the second side is opposite to the first side. A metal oxide is formed on the second side of the channel region of the transistor, wherein the metal oxide contacts the channel region and is exposed to the environment. A semiconductor structure and an operation of a semiconductor structure thereof are also provided.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fu-Chun Huang, Ching-Hui Lin, Chun-Ren Cheng, Shih-Fen Huang, Alexander Kalnitsky
  • Publication number: 20220406819
    Abstract: A method includes: receiving a composite substrate including a first region and a second region, the composite substrate comprising a semiconductor substrate and an insulator layer over the semiconductor substrate; bonding a silicon layer to the composite substrate; depositing a capping layer over the silicon layer; forming a trench through the capping layer, the silicon layer and the insulator layer, the trench exposing a surface of the semiconductor substrate in the first region; growing an initial epitaxial layer in the trench; removing the capping layer to form an epitaxial layer from the silicon layer and the initial epitaxial layer; forming a transistor layer over the epitaxial layer, the transistor layer including a first transistor and a second transistor in the first region and the second region, respectively; and forming an interconnect layer over the transistor layer and electrically coupling the first transistor to the second transistor.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 22, 2022
    Inventors: YUNG-CHIH TSAI, CHIH-PING CHAO, CHUN-HUNG CHEN, SHAOQIANG ZHANG, KUAN-LIANG LIU, CHUN-PEI WU, ALEXANDER KALNITSKY
  • Patent number: 11532642
    Abstract: The present disclosure relates an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
  • Patent number: 11527531
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device comprising a source and drain region arranged within a substrate. A conductive gate is disposed over a doped region of the substrate. A gate dielectric layer is disposed between the source region and the drain region and separates the conductive gate from the doped region. A bottommost surface of the gate dielectric layer is below a topmost surface of the substrate. First and second sidewall spacers are arranged along first and second sides of the conductive gate, respectively. An inner portion of the first sidewall spacer and an inner portion of the second sidewall spacer respectively cover a first and second top surface of the gate dielectric layer. A drain extension region and a source extension region respectively separate the drain region and the source region from the gate dielectric layer.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Shi-Chuang Hsiao, Yu-Hong Kuo
  • Publication number: 20220384709
    Abstract: In some embodiments, a piezoelectric device is provided. The piezoelectric device includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A heating element is disposed over the semiconductor substrate. The heating element is configured to heat the piezoelectric structure to a recovery temperature for a period of time, where heating the piezoelectric structure to the recovery temperature for the period of time improves a degraded electrical property of the piezoelectric device.
    Type: Application
    Filed: August 5, 2022
    Publication date: December 1, 2022
    Inventors: Alexander Kalnitsky, Chun-Ren Cheng, Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20220367654
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device that includes a well region with a substrate. A source region and a drain region are arranged within the substrate on opposite sides of the well region. A gate electrode is arranged over the well region, has a bottom surface arranged below a topmost surface of the substrate, and extends between the source and drain regions. A trench isolation structure surrounds the source region, the drain region, and the gate electrode. A gate dielectric structure separates the gate electrode from the well region, the source, region, the drain region, and the trench isolation structure. The gate electrode structure has a central portion and a corner portion. The central portion has a first thickness, and the corner portion has a second thickness that is greater than the first thickness.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Inventors: Yi-Huan Chen, Kong-Beng Thei, Chien-Chih Chou, Alexander Kalnitsky, Szu-Hsien Liu, Huan-Chih Yuan
  • Publication number: 20220359295
    Abstract: A semiconductor structure and method for manufacturing thereof are provided. The semiconductor structure includes a silicon substrate having a first surface, a III-V layer on the first surface of the silicon substrate and over a first active region, and an isolation region in a portion of the III-V layer extended beyond the first active region. The first active region is in proximal to the first surface. The method includes the following operations. A silicon substrate having a first device region and a second device region is provided, a first active region is defined in the first device region, a III-V layer is formed on the silicon substrate, an isolation region is defined across a material interface in the layer by an implantation operation, and an interconnect penetrating through the isolation region is formed.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: MAN-HO KWAN, FU-WEI YAO, RU-YI SU, CHUN LIN TSAI, ALEXANDER KALNITSKY
  • Publication number: 20220359443
    Abstract: In some embodiments, an integrated chip (IC) is provided. The IC includes a metallization structure disposed over a semiconductor substrate, where the metallization structure includes an interconnect structure disposed in an interlayer dielectric (ILD) structure. A passivation layer is disposed over the metallization structure, where an upper surface of the interconnect structure is at least partially disposed between opposite inner sidewalls of the passivation layer. A sidewall spacer is disposed along the opposite inner sidewalls of the passivation layer, where the sidewall spacer has rounded sidewalls. A conductive structure is disposed on the passivation layer, the rounded sidewalls of the sidewall spacer, and the upper surface of the interconnect structure.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Alexander Kalnitsky, Kong-Beng Thei
  • Publication number: 20220352161
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region and a high voltage region, and a method of formation. In some embodiments, the integrated circuit comprises an isolation structure disposed in the boundary region of the substrate. A first polysilicon component is disposed over the substrate alongside the isolation structure. A boundary dielectric layer is disposed on the isolation structure. A second polysilicon component is disposed on the sacrifice dielectric layer.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Alexander Kalnitsky, Kong-Beng Thei, Ming Chyi Liu, Shih-Chung Hsiao, Jhih-Bin Chen
  • Publication number: 20220352211
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 3, 2022
    Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
  • Publication number: 20220352152
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device comprising a source and drain region arranged within a substrate. A conductive gate is disposed over a doped region of the substrate. A gate dielectric layer is disposed between the source region and the drain region and separates the conductive gate from the doped region. A bottommost surface of the gate dielectric layer is below a topmost surface of the substrate. First and second sidewall spacers are arranged along first and second sides of the conductive gate, respectively. An inner portion of the first sidewall spacer and an inner portion of the second sidewall spacer respectively cover a first and second top surface of the gate dielectric layer. A drain extension region and a source extension region respectively separate the drain region and the source region from the gate dielectric layer.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Shi-Chuang Hsiao, Yu-Hong Kuo
  • Publication number: 20220352044
    Abstract: A semiconductor structure and a method for forming a semiconductor structure are provided. The semiconductor structure includes a substrate having an isolation ring extending in the direction substantially parallel to the surface of the substrate, an active region over the substrate and laterally enclosed by the isolation ring, a seal ring structure over the substrate, the seal ring structure laterally enclosing the active region and including at least a wiring layer and at least a via layer, and an encapsulant material laterally enclosing the seal ring structure.
    Type: Application
    Filed: April 22, 2021
    Publication date: November 3, 2022
    Inventors: FU-JIER FAN, ALEXANDER KALNITSKY, KONG-BENG THEI, JHU-MIN SONG
  • Patent number: 11486854
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 11480982
    Abstract: A current reference which includes a tracking voltage generator including a flipped gate transistor, a first transistor connected with the flipped gate transistor in a Vgs subtractive arrangement, an output node providing a tracking voltage which has a positive or negative temperature dependency based on the flipped gate transistor and the first transistor, and a second transistor connected to the output node; an amplifier to receive the tracking voltage and output an amplified signal; a control transistor to receive the amplified signal; a control resistor connected in series with the control transistor; and a current mirror to receive and mirror a reference current to at least one external device, the current mirror including mirroring pairs having a corresponding mirroring resistor coupled in series with a corresponding mirroring transistor, the mirroring resistor of at least one of the mirroring pairs having a serpentine structure.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mohammad Al-Shyoukh, Alexander Kalnitsky