Patents by Inventor Alexander Kuznetsov
Alexander Kuznetsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250063223Abstract: Methods and apparatus to determine media viewing information for hybrid content delivery are disclosed. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to monitor network traffic associated with at least one device during a media session, determine viewing information associated with the media session based on a consumption data message in the network traffic, the consumption data message transmitted by the at least one device, determine a program identifier of primary content received by the at least one device, the program identifier indicative of a program presented as the primary content by the at least one device, associate a panelist identifier with the viewing information and the program identifier of the primary content, and generate a media session report based on the panelist identifier, the viewing information, and the program identifier.Type: ApplicationFiled: November 5, 2024Publication date: February 20, 2025Inventors: Alexander Topchy, Vladimir Kuznetsov
-
Patent number: 12206958Abstract: Methods, apparatus, systems and articles of manufacture to extend a time range supported by a watermark are disclosed. Example watermark encoding apparatus disclosed herein determine which one of a plurality of timestamp cycles is to be represented by a timestamp of a watermark, the timestamp including a set of timestamp symbols, a first subset of data symbols and a second subset of data symbols. Disclosed example apparatus also modify the first subset of data symbols of the watermark based on a further timestamp symbol not included in the set of timestamp symbols of the timestamp, but not modify the second subset of data symbols based on the further timestamp symbol, the further timestamp symbol to identify the one of the plurality of timestamp cycles to be represented by the timestamp of the watermark. Disclosed example apparatus further embed the watermark in a piece of media.Type: GrantFiled: November 17, 2023Date of Patent: January 21, 2025Assignee: The Nielsen Company (US), LLCInventors: Alexander Topchy, Vladimir Kuznetsov
-
Publication number: 20240288388Abstract: Optical elements that efficiently propagate x-ray radiation over a desired energy range and reject radiation outside the desired energy range are presented herein. In one aspect, one or more optical elements of an x-ray based system include an integrated optical filter including one or more material layers that absorb radiation having energy outside the desired energy band. In general, the integrated filter improves the optical performance of an x-ray based system by suppressing reflectivity within infrared (IR), visible (vis), ultraviolet (UV), extreme ultraviolet (EUV) portions of the spectrum, or any other undesired wavelength region. In a further aspect, one or more diffusion barrier layers prevent degradation of the integrated optical filter, prevent diffusion between the integrated optical filter and other material layers, or both. In some embodiments, the thickness of one or more material layers of an integrated optical filter vary over the spatial area of the filter.Type: ApplicationFiled: May 7, 2024Publication date: August 29, 2024Inventors: Alexander Kuznetsov, Boxue Chen, Nikolay Artemiev
-
Patent number: 12025575Abstract: Optical elements that efficiently propagate x-ray radiation over a desired energy range and reject radiation outside the desired energy range are presented herein. In one aspect, one or more optical elements of an x-ray based system include an integrated optical filter including one or more material layers that absorb radiation having energy outside the desired energy band. In general, the integrated filter improves the optical performance of an x-ray based system by suppressing reflectivity within infrared (IR), visible (vis), ultraviolet (UV), extreme ultraviolet (EUV) portions of the spectrum, or any other undesired wavelength region. In a further aspect, one or more diffusion barrier layers prevent degradation of the integrated optical filter, prevent diffusion between the integrated optical filter and other material layers, or both. In some embodiments, the thickness of one or more material layers of an integrated optical filter vary over the spatial area of the filter.Type: GrantFiled: September 7, 2021Date of Patent: July 2, 2024Assignee: KLA CorporationInventors: Alexander Kuznetsov, Boxue Chen, Nikolay Artemiev
-
Publication number: 20240142948Abstract: Methods and systems for evaluating individual semiconductor metrology tool productivity based on both individual tool productivity metrics and fleet productivity metrics are described herein. Productivity metrics associated with each individual tool are combined with productivity metrics associated with a fleet of tools to identify problematic tools quickly and with fewer false positives. In particular, tool productivity results are obtained much more quickly in situations where productivity is driven by low frequency events. Values of one or more accuracy metrics indicative of a confidence in the ranking of individual tools among the fleet of measurement tools are estimated. In addition, a probability of a future failure event associated with an individual tool of the fleet of measurement tools is predicted based on a difference between a predicted probability distribution of the failure event and an actual, observed distribution of the failure event.Type: ApplicationFiled: November 1, 2022Publication date: May 2, 2024Inventors: Alexander Kuznetsov, Xiaoyue Luo
-
Patent number: 11880142Abstract: A self-calibrating overlay metrology system may receive device overlay data for a device targets on a sample from an overlay metrology tool, determine preliminary device overlay measurements for the device targets including device-scale features using an overlay recipe with the device overlay data as inputs, receive assist overlay data for one or more assist targets on the sample including device-scale features from the overlay metrology tool, where at least one of the one or more assist targets has a programmed overlay offset of a selected value along a particular measurement direction, determine self-calibrating assist overlay measurements for the one or more assist targets based on the assist overlay data, where the self-calibrating assist overlay measurements are linearly proportional to overlay on the sample, and generate corrected overlay measurements for the device targets by adjusting the preliminary device overlay measurements based on the self-calibrating assist overlay measurements.Type: GrantFiled: March 7, 2023Date of Patent: January 23, 2024Assignee: KLA CorporationInventors: Stilian Pandev, Min-Yeong Moon, Andrei V. Shchegrov, Jonathan Madsen, Dimitry Sanko, Liran Yerushalmi, Alexander Kuznetsov, Mahendra Dubey
-
Patent number: 11796390Abstract: A spectroscopic metrology system includes a spectroscopic metrology tool and a controller. The controller generates a model of a multilayer grating including two or more layers, the model including geometric parameters indicative of a geometry of a test layer of the multilayer grating and dispersion parameters indicative of a dispersion of the test layer. The controller further receives a spectroscopic signal of a fabricated multilayer grating corresponding to the modeled multilayer grating from the spectroscopic metrology tool. The controller further determines values of the one or more parameters of the modeled multilayer grating providing a simulated spectroscopic signal corresponding to the measured spectroscopic signal within a selected tolerance. The controller further predicts a bandgap of the test layer of the fabricated multilayer grating based on the determined values of the one or more parameters of the test layer of the fabricated structure.Type: GrantFiled: July 1, 2022Date of Patent: October 24, 2023Assignee: KLA CorporationInventors: Tianhan Wang, Aaron Rosenberg, Dawei Hu, Alexander Kuznetsov, Manh Dang Nguyen, Stilian Pandev, John Lesoine, Qiang Zhao, Liequan Lee, Houssam Chouaib, Ming Di, Torsten R. Kaack, Andrei V. Shchegrov, Zhengquan Tan
-
Publication number: 20230221656Abstract: A self-calibrating overlay metrology system may receive device overlay data for a device targets on a sample from an overlay metrology tool, determine preliminary device overlay measurements for the device targets including device-scale features using an overlay recipe with the device overlay data as inputs, receive assist overlay data for one or more assist targets on the sample including device-scale features from the overlay metrology tool, where at least one of the one or more assist targets has a programmed overlay offset of a selected value along a particular measurement direction, determine self-calibrating assist overlay measurements for the one or more assist targets based on the assist overlay data, where the self-calibrating assist overlay measurements are linearly proportional to overlay on the sample, and generate corrected overlay measurements for the device targets by adjusting the preliminary device overlay measurements based on the self-calibrating assist overlay measurements.Type: ApplicationFiled: March 7, 2023Publication date: July 13, 2023Inventors: Stilian Pandev, Min-Yeong Moon, Andrei V. Shchegrov, Jonathan Madsen, Dimitry Sanko, Liran Yerushalmi, Alexander Kuznetsov, Mahendra Dubey
-
Patent number: 11698251Abstract: Methods and systems for performing overlay and edge placement errors based on Soft X-Ray (SXR) scatterometry measurement data are presented herein. Short wavelength SXR radiation focused over a small illumination spot size enables measurement of design rule targets or in-die active device structures. In some embodiments, SXR scatterometry measurements are performed with SXR radiation having energy in a range from 10 to 5,000 electronvolts. As a result, measurements at SXR wavelengths permit target design at process design rules that closely represents actual device overlay. In some embodiments, SXR scatterometry measurements of overlay and shape parameters are performed simultaneously from the same metrology target to enable accurate measurement of Edge Placement Errors. In another aspect, overlay of aperiodic device structures is estimated based on SXR measurements of design rule targets by calibrating the SXR measurements to reference measurements of the actual device target.Type: GrantFiled: December 30, 2020Date of Patent: July 11, 2023Assignee: KLA CorporationInventors: Andrei V. Shchegrov, Nadav Gutman, Alexander Kuznetsov, Antonio Arion Gellineau
-
Publication number: 20230128610Abstract: Two machine learning modules or models are used to generate a recipe. A first machine learning module determines a set of recipes based on measured signals. The second machine learning module analyzes the set of recipes based on a cost function to determine a final recipe. The second machine learning module also can determine settings if the set of recipes fail evaluation using the cost function.Type: ApplicationFiled: October 25, 2021Publication date: April 27, 2023Inventors: Liran Yerushalmi, Alexander Kuznetsov
-
Publication number: 20230091374Abstract: The present disclosure is directed to object and/or character recognition for use in applications such as computer vision. Advantages of the present disclosure include lightweight functionality that can be used on devices such as smart phones. Aspects of the present disclosure include a sequential architecture where a lightweight machine-learned model can receive an image, detect whether an object is present in one or more regions of the image, and generate an output based on the detection. This output can be applied as a filter to remove image data that can be neglected for more memory intensive machine-learned models applied downstream.Type: ApplicationFiled: February 24, 2020Publication date: March 23, 2023Inventors: Qifei Wang, Alexander Kuznetsov, Alec Michael Go, Grace Chu, Eunyoung Kim, Feng Yang, Andrew Gerald Howard, Jeffrey M. Gilbert
-
Patent number: 11604063Abstract: An overlay metrology system may receive overlay data for in-die overlay targets within various fields on a skew training sample from one or more overlay metrology tools, wherein the in-die overlay targets within the fields have a range programmed overlay offsets, wherein the fields are fabricated with a range of programmed skew offsets. The system may further generate asymmetric target signals for the in-die overlay targets using an asymmetric function providing a value of zero when physical overlay is zero and a sign indicative of a direction of physical overlay. The system may further generate corrected overlay offsets for the in-die overlay targets on the asymmetric target signals, generate self-calibrated overlay offsets for the in-die overlay targets based on the programmed overlay offsets and the corrected overlay offsets, generate a trained overlay recipe, and generate overlay measurements for in-die overlay targets on additional samples using the trained overlay recipe.Type: GrantFiled: September 13, 2021Date of Patent: March 14, 2023Assignee: KLA CorporationInventors: Stilian Pandev, Min-Yeong Moon, Andrei V. Shchegrov, Jonathan Madsen, Dimitry Sanko, Liran Yerushalmi, Alexander Kuznetsov, Mahendra Dubey
-
Patent number: 11604420Abstract: A self-calibrating overlay metrology system may receive device overlay data from device targets on a sample, determine preliminary device overlay measurements for the device targets including device-scale features using an overlay recipe with the device overlay data as inputs, receive assist overlay data from sets of assist targets on the sample including device-scale features, where a particular set of assist targets includes one or more target pairs formed with two overlay targets having programmed overlay offsets of a selected value with opposite signs along a particular measurement direction.Type: GrantFiled: September 28, 2021Date of Patent: March 14, 2023Assignee: KLA CorporationInventors: Stilian Pandev, Min-Yeong Moon, Andrei V. Shchegrov, Jonathan Madsen, Dimitry Sanko, Liran Yerushalmi, Alexander Kuznetsov, Mahendra Dubey
-
Publication number: 20220412734Abstract: An overlay metrology system may receive overlay data for in-die overlay targets within various fields on a skew training sample from one or more overlay metrology tools, wherein the in-die overlay targets within the fields have a range programmed overlay offsets, wherein the fields are fabricated with a range of programmed skew offsets. The system may further generate asymmetric target signals for the in-die overlay targets using an asymmetric function providing a value of zero when physical overlay is zero and a sign indicative of a direction of physical overlay. The system may further generate corrected overlay offsets for the in-die overlay targets on the asymmetric target signals, generate self-calibrated overlay offsets for the in-die overlay targets based on the programmed overlay offsets and the corrected overlay offsets, generate a trained overlay recipe, and generate overlay measurements for in-die overlay targets on additional samples using the trained overlay recipe.Type: ApplicationFiled: September 13, 2021Publication date: December 29, 2022Inventors: Stilian Pandev, Min-Yeong Moon, Andrei V. Shchegrov, Jonathan Madsen, Dimitry Sanko, Liran Yerushalmi, Alexander Kuznetsov, Mahendra Dubey
-
Patent number: 11536674Abstract: Methods and systems for measuring structural and material characteristics of semiconductor structures based on combined x-ray reflectometry (XRR) and x-ray photoelectron spectroscopy (XPS) are presented herein. A combined XRR and XPS system includes an x-ray illumination source and x-ray illumination optics shared by both the XRR and XPS measurement subsystems. This increases throughput and measurement accuracy by simultaneously collecting XRR and XPS measurement data from the same area of the wafer. A combined XRR and XPS system improves measurement accuracy by employing XRR measurement data to improve measurements performed by the XPS subsystem, and vice-versa. In addition, a combined XRR and XPS system enables simultaneous analysis of both XRR and XPS measurement data to more accurately estimate values of one of more parameters of interest. In a further aspect, any of measurement spot size, photon flux, beam shape, beam diameter, and illumination energy are independently controlled.Type: GrantFiled: October 23, 2020Date of Patent: December 27, 2022Assignee: KLA CorporationInventors: Andrei V. Shchegrov, Alexander Kuznetsov, Oleg Khodykin
-
Publication number: 20220357673Abstract: A self-calibrating overlay metrology system may receive device overlay data from device targets on a sample, determine preliminary device overlay measurements for the device targets including device-scale features using an overlay recipe with the device overlay data as inputs, receive assist overlay data from sets of assist targets on the sample including device-scale features, where a particular set of assist targets includes one or more target pairs formed with two overlay targets having programmed overlay offsets of a selected value with opposite signs along a particular measurement direction.Type: ApplicationFiled: September 28, 2021Publication date: November 10, 2022Inventors: Stilian Pandev, Min-Yeong Moon, Andrei V. Shchegrov, Jonathan Madsen, Dimitry Sanko, Liran Yerushalmi, Alexander Kuznetsov, Mahendra Dubey
-
Publication number: 20220349752Abstract: A spectroscopic metrology system includes a spectroscopic metrology tool and a controller. The controller generates a model of a multilayer grating including two or more layers, the model including geometric parameters indicative of a geometry of a test layer of the multilayer grating and dispersion parameters indicative of a dispersion of the test layer. The controller further receives a spectroscopic signal of a fabricated multilayer grating corresponding to the modeled multilayer grating from the spectroscopic metrology tool. The controller further determines values of the one or more parameters of the modeled multilayer grating providing a simulated spectroscopic signal corresponding to the measured spectroscopic signal within a selected tolerance. The controller further predicts a bandgap of the test layer of the fabricated multilayer grating based on the determined values of the one or more parameters of the test layer of the fabricated structure.Type: ApplicationFiled: July 1, 2022Publication date: November 3, 2022Inventors: Tianhan Wang, Aaron Rosenberg, Dawei Hu, Alexander Kuznetsov, Manh Dang Nguyen, Stilian Pandev, John Lesoine, Qiang Zhao, Liequan Lee, Houssam Chouaib, Ming Di, Torsten R. Kaack, Andrei V. Shchegrov, Zhengquan Tan
-
Patent number: 11460418Abstract: Methods and systems for measuring structural and material characteristics of semiconductor structures based on wavelength resolved, soft x-ray reflectometry (WR-SXR) at multiple diffraction orders are presented. WR-SXR measurements are simultaneous, high throughput measurements over multiple diffraction orders with broad spectral width. The availability of wavelength resolved signal information at each of the multiple diffraction orders improves measurement accuracy and throughput. Each non-zero diffraction order includes multiple measurement points, each different measurement point associated with a different wavelength. In some embodiments, WR-SXR measurements are performed with x-ray radiation energy in a range of 10-5,000 electron volts at grazing angles of incidence in a range of 1-45 degrees. In some embodiments, the illumination beam is controlled to have relatively high divergence in one direction and relatively low divergence in a second direction, orthogonal to the first direction.Type: GrantFiled: August 26, 2019Date of Patent: October 4, 2022Assignee: KLA CorporationInventors: Alexander Kuznetsov, Chao Chang
-
Patent number: 11378451Abstract: A spectroscopic metrology system includes a spectroscopic metrology tool and a controller. The controller generates a model of a multilayer grating including two or more layers, the model including geometric parameters indicative of a geometry of a test layer of the multilayer grating and dispersion parameters indicative of a dispersion of the test layer. The controller further receives a spectroscopic signal of a fabricated multilayer grating corresponding to the modeled multilayer grating from the spectroscopic metrology tool. The controller further determines values of the one or more parameters of the modeled multilayer grating providing a simulated spectroscopic signal corresponding to the measured spectroscopic signal within a selected tolerance. The controller further predicts a bandgap of the test layer of the fabricated multilayer grating based on the determined values of the one or more parameters of the test layer of the fabricated structure.Type: GrantFiled: August 8, 2017Date of Patent: July 5, 2022Assignee: KLA CorporationInventors: Tianhan Wang, Aaron Rosenberg, Dawei Hu, Alexander Kuznetsov, Manh Dang Nguyen, Stilian Pandev, John Lesoine, Qiang Zhao, Liequan Lee, Houssam Chouaib, Ming Di, Torsten R. Kaack, Andrei V. Shchegrov, Zhengquan Tan
-
Patent number: 11333621Abstract: Methods and systems for performing measurements of semiconductor structures based on high-brightness, polychromatic, reflective small angle x-ray scatterometry (RSAXS) metrology are presented herein. RSAXS measurements are performed over a range of wavelengths, angles of incidence, and azimuth angles with small illumination beam spot size, simultaneously or sequentially. In some embodiments, RSAXS measurements are performed with x-ray radiation in the soft x-ray (SXR) region at grazing angles of incidence in the range of 5-20 degrees. In some embodiments, the x-ray illumination source size is 10 micrometers or less, and focusing optics project the source area onto a wafer with a demagnification factor of 0.2 or less, enabling an incident x-ray illumination spot size of less than two micrometers.Type: GrantFiled: July 9, 2018Date of Patent: May 17, 2022Assignee: KLA-Tencor CorporationInventors: Daniel Wack, Oleg Khodykin, Andrei V. Shchegrov, Alexander Kuznetsov, Nikolay Artemiev, Michael Friedmann