Patents by Inventor Alexander Marc Van Der Lee

Alexander Marc Van Der Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200003673
    Abstract: A laser sensor module for detecting a particle density of particles, which includes: a laser; a detector; and a mirror. The laser is arranged to emit a laser beam to the mirror. A movement of the mirror is arranged to redirect the laser beam. The laser beam is displaced with respect to a rotation axis of the mirror such that a focus region of the laser beam is moving with a velocity having components normal and parallel to the optical axis of the redirected laser beam such that an angle between the parallel and the normal velocity component is at least a threshold angle of 2°. The detector is arranged to determine a self mixing interference signal of an optical wave within a laser cavity of the laser, the self mixing interference signal being generated by laser light of the laser beam reflected by at least one of the particles.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Alexander Marc Van der Lee, Johannes Hendrikus Maria Spruit, Petrus Theodorus Jutte
  • Publication number: 20190383717
    Abstract: A method for determining operating conditions of a particle detector that includes a multimode Vertical Cavity Surface Emitting Laser (VCSEL) includes providing an electrical drive current to the multimode VCSEL such that a laser beam is emitted by the multimode VCSEL and varying the electrical drive current within a predefined range of electrical drive currents. The method further includes determining, as a function of the electrical drive current, an intensity signal of an optical wave within a laser cavity of the multimode VCSEL, determining, as a function of the electrical drive current, a noise measure of the intensity signal, determining a range of electrical drive currents for which the noise measure is below a predefined threshold noise measure value, and determining operating conditions of the particle detector by choosing an electrical drive current for particle detection out of the determined low noise range of electrical drive currents.
    Type: Application
    Filed: September 2, 2019
    Publication date: December 19, 2019
    Inventors: Ulrich WEICHMANN, Joachim Wilhelm HELLMIG, Alexander Marc VAN DER LEE, Holger Joachim MOENCH
  • Publication number: 20190346360
    Abstract: A laser sensor for detecting a particle density includes: a laser configured to emit a measurement beam, an optical arrangement being arranged to focus the measurement beam to a measurement volume, the optical arrangement having a numerical aperture with respect to the measurement beam, a detector configured to determine a self-mixing interference signal of a optical wave within a laser cavity of the laser, and an evaluator. The evaluator is configured to: receive detection signals generated by the detector in reaction to the determined self-mixing interference signal, determine an average transition time of particles passing the measurement volume in a predetermined time period based on a duration of the self-mixing interference signals generated by the particles, determine a number of particles based on the self-mixing interference signals in the predetermined time period, and determine the particle density based on the average transition time and the number of particles.
    Type: Application
    Filed: June 7, 2019
    Publication date: November 14, 2019
    Inventors: Petrus Theodorus Jutte, Johannes Hendrikus Maria Spruit, Alexander Marc Van der Lee, Joachim Wilhelm Hellmig, Roy Ovink, Ralph Engelbertus Theodorus Gudde
  • Publication number: 20190285537
    Abstract: A laser sensor module for detecting a particle density of small particles with a particle size between 0.05 ?m and 10 ?m includes a first laser configured to emit a first measurement beam, a second laser configured to emit a second measurement beam, and an optical arrangement configured to focus the first measurement beam to a first measurement volume and to focus the second measurement beam to a second measurement volume. The optical arrangement includes a first numerical aperture and a second numerical aperture arranged to detect a predetermined minimum particle size. The laser sensor module further includes a first detector configured to determine a first self-mixing interference signal of a first optical wave, a second detector configured to determine a second self-mixing interference signal of a second optical wave, and an evaluator.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 19, 2019
    Inventors: Johannes Hendrikus Maria SPRUIT, Alexander Marc VAN DER LEE, Petrus Theodorus JUTTE, Holger Joachim MOENCH, Joachim Wilhelm HELLMIG, Roy OVINK
  • Publication number: 20190285753
    Abstract: The invention describes a laser sensor or laser sensor module (100) using self-mixing interference for particle density detection, a related method of particle density detection and a corresponding computer program product. The invention further relates to devices comprising such a laser sensor or laser sensor module. It is a basic idea of the present invention to detect particles by means of self-mixing interference signals and determine a corresponding particle density. In addition at least a first parameter related to at least one velocity component of a velocity vector of the particles is determined in order to correct the particle density if there is the relative movement between a detection volume and the particles. Such a relative movement may for example be related to a velocity of a fluid transporting the particles (e.g. wind speed). Furthermore, it is possible to determine at least one velocity component of the velocity of the particles based on the self-mixing interference signals.
    Type: Application
    Filed: May 12, 2017
    Publication date: September 19, 2019
    Inventors: JOHANNES HENDRIKUS MARIA SPRUIT, ALEXANDER MARC VAN DER LEE, GERBEN KOOIJMAN, OKKE OUWELTJES, JOACHIM WILHELM HELLMIG, ARNOLDUS JOHANNES MARTINUS JOZEPH RAS, PETRUS THEODORUS JUTTE
  • Patent number: 10379028
    Abstract: The invention describes a laser sensor module (100) which is adapted to detect or determine at least two different physical parameters by means of self-mixing interference by focusing a laser beam to different positions. Such a laser sensor module (100) may be used as an integrated sensor module, for example, in mobile devices (250). The laser sensor module (100) may be used as an input device and in addition as a sensor for detecting physical parameters in an environment of the mobile communication device (250). One physical parameter in the environment of the mobile communication device (250) may, for example, be the concentration of particles in the air (air pollution, smog . . . ). The invention further describes a related method and computer program product.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 13, 2019
    Assignee: PHILIPS PHOTONICS GMBH
    Inventors: Johannes Hendrikus Maria Spruit, Alexander Marc Van Der Lee, Gerben Kooijman, Okke Ouweltjes, Joachim Wilhelm Hellmig, Arnoldus Johannes Martinus Jozeph Ras, Petrus Theodorus Jutte
  • Publication number: 20190146065
    Abstract: The invention describes a laser sensor module. The laser sensor module comprises at least one laser (100) being adapted to emit a measurement beam (111). The laser sensor module further comprises a compact optical device (150) being arranged to focus the measurement beam (111) to a focus region (115). The compact optical device comprises an optical carrier (154) with a convex mirror surface (152) on one side and a concave mirror surface (156) on a second opposite side, wherein the concave mirror surface (156) comprises an entrance surface through which the measurement beam (111) can enter the optical carrier (154). The compact optical device (150) is arranged such that the measurement beam (111) entering the optical carrier is reflected and diverged by means of the convex mirror surface (152) to the concave mirror surface (156). The concave mirror surface (156) is arranged to focus the measurement beam (111) received from the convex mirror surface (152) to a focus region (115).
    Type: Application
    Filed: May 9, 2017
    Publication date: May 16, 2019
    Inventors: PETRUS THEODORUS JUTTE, JOHANNES HENDRIKUS MARIA SPRUIT, ALEXANDER MARC VAN DER LEE
  • Publication number: 20190099082
    Abstract: A fiber assembly (60) for capnography or oxygraphy employing an housing (61), a collimator (64), a retroreflector (67) and a single mode optical fiber (63). Housing (61) including a respiratory gas detection chamber (62). Collimator (64) is rigidly disposed within or detachably attached to housing (61), and retroreflector (67) is rigidly disposed within or detachably attached to housing (61). Collimator (64) and retroreflector (67) are optically aligned within housing (61) across respiratory gas detection chamber (62). Optical fiber (63) is optically aligned with collimator (64) within or external to the housing (61). In operation, optical fiber (63) emits a gas sensing light beam through collimator (64) across respiratory gas detection chamber (62) to retroreflector (67), and optical fiber (63) receives a gas detection light beam reflected from retroreflector (67) across respiratory gas detection chamber (62) through collimator (64) to optical fiber (63).
    Type: Application
    Filed: March 23, 2017
    Publication date: April 4, 2019
    Inventors: PETRUS THEODORUS JUTTE, ADRIANUS WILHELMUS DIONISIUS MARIA VAN DEN BIJGAART, NICOLAAS LAMBERT, HANS WILLEM VAN KESTEREN GIRO, ALEXANDER MARC VAN DER LEE
  • Publication number: 20190097393
    Abstract: The invention describes a laser sensor module comprising at least one Vertical Cavity Surface Emitting Laser (100) and at least one driving circuit (120). The driving circuit (120) is adapted to provide electrical energy to the Vertical Cavity Surface Emitting Laser (100) such that the Vertical Cavity Surface Emitting Laser (100) emits laser pulses (345) with a pulse length (356) of less than 100 ns and a duty cycle of less than 5% in comparison to a continuous laser emission. The driving circuit (120) is further adapted to provide additional energy to the Vertical Cavity Surface Emitting Laser (100) at least 100 ns prior to at least a part of the laser pulses (345) such that the part of the laser pulses (345) are emitted under defined optical conditions. The invention further describes a distance detection device comprising the laser sensor module and a method of driving the laser sensor module.
    Type: Application
    Filed: December 11, 2015
    Publication date: March 28, 2019
    Inventors: HOLGER MOENCH, ALEXANDER MARC VAN DER LEE, STEPHAN GRONENBORN
  • Publication number: 20180224368
    Abstract: The invention describes a laser sensor module (100) which is adapted to detect or determine at least two different physical parameters by means of self-mixing interference by focusing a laser beam to different positions. Such a laser sensor module (100) may be used as an integrated sensor module, for example, in mobile devices (250). The laser sensor module (100) may be used as an input device and in addition as a sensor for detecting physical parameters in an environment of the mobile communication device (250). One physical parameter in the environment of the mobile communication device (250) may, for example, be the concentration of particles in the air (air pollution, smog . . . ). The invention further describes a related method and computer program product.
    Type: Application
    Filed: July 15, 2016
    Publication date: August 9, 2018
    Inventors: JOHANNES HENDRIKUS MARIA SPRUIT, ALEXANDER MARC VAN DER LEE, GERBEN KOOIJMAN, OKKE OUWELTJES, JOACHIM WILHELM HELLMIG, ARNOLDUS JOHANNES MARTINUS JOZEPH RAS, PETRUS THEODORUS JUTTE
  • Publication number: 20180209892
    Abstract: The invention describes a laser sensor module (100) for particle size detection. The laser sensor module (100) comprises at least one first laser (110), at least one first detector (120), at least one electrical driver (130) and at least one evaluator (140). The first laser (110) is adapted to emit first laser light in reaction to signals provided by the at least one driver (130). The at least one first detector (120) is adapted to determine a first self -mixing interference signal (30) of an optical wave within a first laser cavity of the first laser (110). The first self-mixing interference signal (30) is caused by first reflected laser light reentering the first laser cavity, the first reflected laser light being reflected by a particle receiving at least a part of the first laser light.
    Type: Application
    Filed: August 1, 2016
    Publication date: July 26, 2018
    Inventors: ALEXANDER MARC VAN DER LEE, JOACHIM WILHELM HELLMIG, JOHANNES HENDRIKUS MARIA SPRUIT
  • Publication number: 20180209779
    Abstract: The invention describes a laser sensor module (100) for particle density detection. The laser sensor module (100) comprising at least one first laser (110), at least one first detector (120) and at least one electrical driver (130). The first laser (110) is adapted to emit first laser light in reaction to signals provided by the at least one electrical driver (130). The at least one first detector (120) is adapted to detect a first self-mixing interference signal of an optical wave within a first laser cavity of the first laser (110). The first self-mixing interference signal is caused by first reflected laser light reentering the first laser cavity, the first reflected laser light being reflected by a particle receiving at least a part of the first laser light. The laser sensor module (100) is adapted to reduce multiple counts of the particle. The invention further describes a related method and computer program product.
    Type: Application
    Filed: July 14, 2016
    Publication date: July 26, 2018
    Inventors: ALEXANDER MARC VAN DER LEE, JOACHIM WILHELM HELLMIG, JOHANNES HENDRIKUS MARIA SPRUIT, HOLGER MOENCH, CORNELIS REINDER RONDA, KORAY KARAKAYA
  • Patent number: 9677873
    Abstract: An apparatus, method and computer program for measuring a distance using a self-mixing interference (SMI) unit that generates an SMI signal. The SMI unit comprises a laser emitting a first laser beam directed to an object and wherein the SMI signal depends on an interference of the first laser beam and a second laser beam reflected by the object. A peak width determination unit determines a peak width of the SMI signal, and a distance determination unit determines a distance between the object and the SMI unit depending on the determined peak width of the SMI signal. Since the distance is determined depending on the peak width of the SMI signal, without requiring a laser driving current modulation, advanced electronics for modulating the driving current of the laser are not needed. This reduces the technical efforts needed for determining the distance.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 13, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Alexander Marc Van Der Lee, Mark Carpaij
  • Patent number: 9658219
    Abstract: A microelectronic sensor device for the detection of target components with label or magnetic particles includes a carrier with a binding surface at which target components can collect and optionally bind to specific capture elements. An input light beam is transmitted into the carrier and totally internally reflected at the binding surface. The amount of light in the output light beam is detected by a light detector. Evanescent light generated during the total internal reflection is affected by target components and/or label particles at the binding surface and will be missing in the output light beam. This is used to determine the amount of target components at the binding surface from the amount of light in the output light beam. A magnetic field generator is optionally used to generate a magnetic field at the binding surface by which magnetic label particles can be manipulated, such as attracted or repelled.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: May 23, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina De Theije, Thea Van Der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Patent number: 9229024
    Abstract: The method is based on a determination of the orientation of the sensor to the surface moving with respect to the sensor and then acquiring data where the lateral velocity is small and the forward velocity is large. Then, the orientation of the sensor with respect to the direction of the forward velocity is determined and the velocity data subsequently measured are corrected using the measured orientation of the sensor with respect to the reference surface and the forward velocity direction.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: January 5, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mark Carpaij, Alexander Marc Van Der Lee, Bernd Engelbrecht, Marcel Schemmann, Carsten Heinks, Holger Moench
  • Publication number: 20150241416
    Abstract: The invention relates to a method for the detection of target components that comprise label particles, for example magnetic particles (1). The method includes (a) collecting the target components at a binding surface (12, 112, 512) of a carrier (11, 111, 211, 311, 411, 511); (b) directing an input light beam (L1, L1a, L1b) into the carrier such that it is totally internally reflected in an investigation region (13, 313a, 313b) at the binding surface (12, 112, 512); and (c) determining the amount of light of an output light beam (L2, L2a, L2b) that comprises at least some of the totally internally reflected light. Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles (1) at the binding surface (12) and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface (12) from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Application
    Filed: May 8, 2015
    Publication date: August 27, 2015
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina DE THEIJE e/v WIJGERGANGS, Thea van der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Publication number: 20150226733
    Abstract: The invention relates to a carrier with a binding surface at which target components that comprise label particles, for example magnetic particles, can collect and optionally bind to specific capture elements. An input light beam (L1) is transmitted into the carrier and totally internally reflected at the binding surface. The amount of light in the output light beam (L2) and optionally also of fluorescence light emitted by target components at the binding surface is then detected by a light detector. Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles at the binding surface and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Application
    Filed: April 15, 2015
    Publication date: August 13, 2015
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina DE THEIJE e/v WIJGERGANGS, Thea van der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Patent number: 9091573
    Abstract: A sensor device (340) for determining a flow characteristic of an object (341) being movable in an element (342) comprises a light emitting unit (344) configured for emitting light towards the element (342) and a light detecting unit (344) configured for detecting light scattered back from the element (342). The sensor device (340) comprises an optical unit (346) configured for spatially separating a light incidence element portion (348) of the element (342) and a light detection element portion (350) of the element (342) from one another, wherein the light incidence element portion (348) is associated with the emitted light inciding on the element (342) and the light detection element portion (350) is associated with the back-scattered light scattered back from the element (342) for detection.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 28, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Alexander Marc Van Der Lee, Jeroen Veen
  • Patent number: 8982334
    Abstract: The present invention refers to a method of operating a self-mixing interference sensor and a corresponding self-mixing interference sensor device. In the method the laser (1) of the device is controlled to periodically emit a laser pulse followed by an emission period of laser radiation having a lower amplitude. The pulse width of the laser pulse is selected such that the pulse after reflection at the object (3) re-enters the laser (1) during the emission period of laser radiation with lower amplitude. The corresponding SMI signal has an increased signal to noise ratio.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: March 17, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Alexander Marc Van Der Lee, Mark Carpaij, Holger Moench, Marcel Schemmann
  • Patent number: 8692979
    Abstract: A sensor module (1) for measuring the distance to a target and/or the velocity of the target (50), the sensor module (1) comprising at least one laser source (100), at least one detector (200) being adapted to detect modulated laser light and at least one control element the control element (400) being adapted to vary the focus point of the laser light and/or the intensity of the laser light and/or the direction of the laser light. The control of the laser light emitted by the laser source (100) either by active optical devices as variable focus lenses or controllable attenuators or passive optical elements in combination with arrays of laser sources (100) and detectors (200) enable flexible and robust sensor modules.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: April 8, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Holger Moench, Mark Carpaij, Alexander Marc Van Der Lee, Stefan Schwan, Meng Han, Marcel Franz Christian Schemmann