Patents by Inventor Alexander Melzer

Alexander Melzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134002
    Abstract: A radar device may generate an integrated range-velocity map by combining data from a plurality of range-velocity maps. Each range-velocity map may be associated with a respective radar channel from a plurality of radar channels. The radar device may identify a first peak in the integrated range-velocity map. The first peak may indicate one or more radar targets in the integrated range-velocity map and being identified by a first bin having a first range-velocity bin index. The radar device may determine a first data set by extracting, from each range-velocity map, data that is included in a respective bin associated with the first range-velocity bin index. The radar device may process the first data set to determine a first set of phase imbalances associated with the plurality of radar channels.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 25, 2024
    Inventors: Esmaeil KAVOUSI GHAFI, Alexander MELZER, Matthias WAGNER, Oliver LANG
  • Patent number: 11899125
    Abstract: A radio frequency (RF) circuit includes an input terminal configured to receive a reception signal from an antenna; an output terminal configured to output a digital output signal; a receive path including a mixer and an analog-to-digital converter (ADC), wherein the receive path is coupled to and between the input and output terminals, wherein the receive path includes an analog portion and a digital portion, and wherein the ADC generates a digital signal based on an analog signal received from the analog portion; a test signal generator configured to generate an analog test signal injected into the analog portion of the receive path; and a digital processor configured to receive a digital test signal from the digital portion, the digital test signal being derived from the analog test signal, analyze a frequency spectrum of the digital test signal, and determine a quality of the digital test signal.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: February 13, 2024
    Assignee: Infineon Technologies AG
    Inventors: Alexander Melzer, Rainer Findenig
  • Patent number: 11837797
    Abstract: A circuit includes a radio frequency (RF) channel including an input node and an output node and being configured to receive an RF oscillator signal at the input node and to provide an RF output signal at the output node; a mixer configured to mix an RF reference signal and an RF test signal representative of the RF output signal to generate a mixer output signal; an analog-to-digital converter configured to sample the mixer output signal in order to provide a sequence of sampled values; and a control circuit configured to provide a sequence of phase offsets by phase-shifting at least one of the RF test signal and the RF reference signal using one or more phase shifters, calculate a spectral value from the sequence of sampled values; and calculate estimated phase information indicating a phase of the RF output signal based on the spectral value.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 5, 2023
    Assignee: Infineon Technologies AG
    Inventors: Jochen O. Schrattenecker, Niels Christoffers, Vincenzo Fiore, Bernhard Gstoettenbauer, Helmut Kollmann, Alexander Melzer, Alexander Onic, Rainer Stuhlberger, Mathias Zinnoecker
  • Patent number: 11754667
    Abstract: In accordance with an embodiment, a method of operating a radar system includes activating a transmitter to transmit a radar signal during a first time period, receiving a reflection of the radar signal from a radar antenna, downconverting the reflected radar signal, and digitally processing the downconverted reflected radar signal within a first frequency bandwidth using a first signal path. The method also includes deactivating the transmitter during a second time period, receiving a second signal from the radar antenna during the second time period, downconverting the second signal, measuring a power of the downconverted second signal within a second frequency bandwidth using a second signal path different from the first signal path, and determining an interference metric based on measuring the power.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: September 12, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Melzer, Paul Meissner, Mate Andras Toth
  • Patent number: 11719802
    Abstract: A radar method is described. According to one exemplary embodiment, the method includes generating a first RF oscillator signal in a first chip and supplying the first RF oscillator signal to a transmission (TX) channel of the first chip and transmitting the first RF oscillator signal from the TX channel of the first chip to the second chip via a transmission line.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: August 8, 2023
    Assignee: Infineon Technologies AG
    Inventors: Florian Starzer, Helmut Kollmann, Alexander Melzer, Rainer Stuhlberger, Roland Vuketich, Mathias Zinnoecker
  • Patent number: 11693085
    Abstract: A method is described that can be used in a radar system. In accordance with one exemplary embodiment, the method includes calculating a first spectrum, which represents a spectrum of a segment of a complex baseband signal. The segment is assignable to a specific chirp of a chirp sequence contained in a first RF radar signal. The method further includes estimating a second spectrum, which represents a spectrum of an interference signal contained in the complex baseband signal, based on a portion of the first spectrum that is assigned to negative frequencies.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 4, 2023
    Assignee: Infineon Technologies AG
    Inventors: Paul Meissner, Alexander Melzer, Mate Andras Toth
  • Patent number: 11693106
    Abstract: Methods for detecting radar targets are provided. According to one exemplary embodiment, the method includes providing a digital radar signal having a sequence of signal segments. Each signal segment of the sequence is respectively associated with a chirp of a transmitted RF radar signal. The method further includes detecting one or more radar targets based on a first subsequence of successive signal segments of the sequence. For each detected radar target, a distance value and a velocity value are determined. If a group of radar targets having overlapping signal components has been detected, a respective spectral value is calculated for each radar target of the group of radar targets based on a second subsequence of the sequence of signal segments and further based on the velocity values ascertained for the group of radar targets.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: July 4, 2023
    Assignee: Infineon Technologies AG
    Inventors: Oliver Lang, Michael Gerstmair, Alexander Melzer, Christian Schmid
  • Patent number: 11681013
    Abstract: A radar system and a method for a radar system are described. In accordance with one exemplary embodiment, the method includes generating a local oscillator signal in a first radar chip, generating a frequency-divided signal from the local oscillator signal by means of a frequency divider arranged in the first radar chip, transmitting the frequency-divided signal to a second radar chip, and transmitting the local oscillator signal to the second radar chip. The local oscillator signal received in the second radar chip is fed to an output channel of the second radar chip, which generates an output signal on the basis thereof. The method further includes generating—on the basis of the output signal of the output channel and the frequency-divided signal received by the second radar chip—a signal indicating a phase angle of the output signal relative to the received frequency-divided signal.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Melzer, Clemens Pfeffer
  • Patent number: 11644530
    Abstract: A radio frequency (RF) circuit includes an input terminal configured to receive a reception signal from an antenna; an output terminal configured to output a digital output signal; a receive path including a mixer and an analog-to-digital converter (ADC), wherein the receive path is coupled to and between the input and output terminals, wherein the receive path includes an analog portion and a digital portion, and wherein the ADC generates a digital signal based on an analog signal received from the analog portion; a test signal generator configured to generate an analog test signal injected into the analog portion of the receive path; and a digital processor configured to receive a digital test signal from the digital portion, the digital test signal being derived from the analog test signal, analyze a frequency spectrum of the digital test signal, and determine a quality of the digital test signal.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: May 9, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Melzer, Francesco Lombardo
  • Patent number: 11635489
    Abstract: A method for the use in a radar system is described herein. In accordance with one embodiment, the method includes providing a local oscillator signal to an RF output channel of a radar system. The RF output channel is configured to generate, in an enabled state, an RF output signal based on the local oscillator signal. The method further includes determining a first measurement signal based on the local oscillator signal and a first representation of the RF output signal, while the RF output channel is disabled, and thus the first measurement signal represents crosstalk. Further, the method includes determining a second measurement signal based on the local oscillator signal and a second representation of the RF output signal while the RF output channel is enabled. A phase value associated with the RF output channel is determined based on the first measurement signal and the second measurement signal.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: April 25, 2023
    Assignee: Infineon Technologies AG
    Inventors: Vincenzo Fiore, Werner Arriola, Rene Kobler, Oliver Lang, Alexander Melzer
  • Publication number: 20230118317
    Abstract: A radio frequency (RF) circuit includes an input terminal configured to receive a reception signal from an antenna; an output terminal configured to output a digital output signal; a receive path including a mixer and an analog-to-digital converter (ADC), wherein the receive path is coupled to and between the input and output terminals, wherein the receive path includes an analog portion and a digital portion, and wherein the ADC generates a digital signal based on an analog signal received from the analog portion; a test signal generator configured to generate an analog test signal injected into the analog portion of the receive path; and a digital processor configured to receive a digital test signal from the digital portion, the digital test signal being derived from the analog test signal, analyze a frequency spectrum of the digital test signal, and determine a quality of the digital test signal.
    Type: Application
    Filed: October 20, 2021
    Publication date: April 20, 2023
    Applicant: Infineon Technologies AG
    Inventors: Alexander MELZER, Rainer FINDENIG
  • Patent number: 11592520
    Abstract: A method is described below which can be used in a radar system. According to one example implementation, the method comprises providing a digital baseband signal using a radar receiver. The baseband signal comprises a plurality of segments, wherein each segment is assigned to a chirp of an emitted chirp sequence and each segment comprises a specific number of samples.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Paul Meissner, Alexander Melzer, Christian Schmid, Mate Andras Toth
  • Patent number: 11567169
    Abstract: A radar system is provided that includes a radar monolithic microwave integrated circuit (MMIC). The radar MMIC includes a plurality of radar signal channels; and at least one sensor configured to measure a physical parameter related to a temperature of the radar MMIC, and to generate sensor data corresponding to measured values of the physical parameter; and a controller configured to receive the sensor data from the at least one sensor, and to determine a channel operation of the plurality of radar signal channels, including selectively disabling at least a first radar signal channel of the plurality of radar signal channels and selectively enabling at least a second radar signal channel of the plurality of radar signal channels based on the measured values.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: January 31, 2023
    Assignee: Infineon Technologies AG
    Inventors: Francesco Lombardo, George Efthivoulidis, Rainer Findenig, Alexander Melzer
  • Publication number: 20230014179
    Abstract: The present disclosure relates to a radar device, including a transmitter circuit configured to generate an RF oscillator signal and to transmit an RF fault detection signal based on the RF oscillator signal, a receiver circuit configured to receive an RF reception signal based on the RF fault detection signal and to mix the RF reception signal with the RF oscillator signal in order to obtain a down-converted reception signal, and a fault detection circuit configured to detect a hardware fault of the radar device based on a phase of the down-converted reception signal.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 19, 2023
    Applicant: Infineon Technologies AG
    Inventors: Matthias WAGNER, Alexander MELZER
  • Patent number: 11550028
    Abstract: The description below relates to a method for a radar sensor. According to one example implementation, the method comprises receiving configuration data and storing the received configuration data in a first radar chip having multiple transmission channels. The configuration data contain multiple parameter sets for a chirp sequence and association information representing an association of a respective chirp of the chirp sequence with one of the multiple parameter sets. The method further comprises receiving a trigger signal in the first radar chip. The trigger signal indicates the beginning of a respective chirp of the chirp sequence. The transmission channels mentioned are repeatedly configured in sync with the trigger signal, wherein for each chirp of the chirp sequence the transmission channels are configured according to the respective association information.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: January 10, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Melzer, Bernhard Greslehner-Nimmervoll, Clemens Pfeffer
  • Patent number: 11486999
    Abstract: A radar system is described. In accordance with one example implementation, the radar system comprises a passive coupler arrangement and also a first radar chip, a second radar chip and a third radar chip. The radar chips each comprise at least one external RF contact and also a local oscillator designed to generate an RF oscillator signal at least in a switched-on state. The external RF contacts of the radar chips are coupled via the coupler arrangement in such a way that, in a first operating mode, the RF oscillator signal can be transferred from the first radar chip via the coupler arrangement to the second radar chip and the third radar chip, and that, in a second operating mode, the RF oscillator signal can be transferred from the second radar chip via the coupler arrangement to the third radar chip.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: November 1, 2022
    Assignee: Infineon Technologies AG
    Inventors: Farhan Bin Khalid, Andreas Och, Alexander Melzer, Clemens Pfeffer, Andre Roger, Philipp Schmidt
  • Patent number: 11480656
    Abstract: A method of configuring a radar monolithic microwave integrated circuit (MMIC) and executing configured commands includes receiving and storing a plurality of configuration commands corresponding to unique time-dependent functions, each configuration command corresponding to a different one of the unique time-dependent functions; generating a unique command handle for each configuration command; transmitting the unique command handle for each configuration command to a controller; receiving and storing a bundled configuration command comprising a plurality of unique command handles corresponding to a set of configuration commands; generating a unique bundled command handle for the bundled configuration command; transmitting the unique bundled command handle to the controller; and receiving an execute command that includes the unique bundled command handle, where the execute command triggers execution of an execution flow of the unique time-dependent functions corresponding to the set of configuration commands
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: October 25, 2022
    Assignee: Infineon Technologies AG
    Inventors: Pranava Tripathi, Alexander Girlinger, Rene Kobler, Alexander Melzer, Andreas Voggeneder
  • Publication number: 20220308161
    Abstract: A cascaded RF system includes a first MMIC and at least a second MMIC. During a first mode of operation: using an LO generation circuit of the first MMIC to generate a first LO signal based on a system clock signal; outputting the first LO signal from an LO output port of the first MMIC; receiving the first LO signal via a first LO input port of the first MMIC; and receiving the first LO signal via a second LO input port of the second MMIC. During a second mode of operation: using an LO generation circuit of the second MMIC to generate a second LO signal based on the system clock signal; and outputting the second LO signal from an LO output port of the second MMIC to a first LO input port of the second MMIC and to a second LO input port of the first MMIC.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 29, 2022
    Applicant: Infineon Technologies AG
    Inventors: Alexander MELZER, Francesco LOMBARDO
  • Patent number: 11428775
    Abstract: A radar system includes a local oscillator for generating a local oscillator signal, transmission channels, and a reception channel. The transmission channels are designed to generate and output RF radar signals based on the local oscillator signal The transmission channels have phase shifters for setting the phase of the RF radar signals. The reception channel is designed to receive an RF signal and to convert it into a baseband signal by using the local oscillator signal supplied thereto. A method includes operating the local oscillator in a CW mode, setting a specific combination of phase shifts for the phase shifters of the transmission channels, altering the phase of the local oscillator signal supplied to the reception channel or of the phase shifts of the phase shifters by a phase offset, and ascertaining that phase offset for which the baseband signal at least approximately assumes a maximum.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 30, 2022
    Inventors: Alexander Melzer, Andreas Dollinger, Rene Kobler, Georg Krebelder, Christoph Wagner, Martin Wiessflecker
  • Patent number: 11422230
    Abstract: A method includes: receiving a reflected radar signal including a first radar chirp signal during a first chirp time period and a second radar chirp signal during a second chirp time period; downconverting the reflected radar signal to form a baseband signal; adding a DC offset to the baseband signal to form a DC offset baseband signal, adding the DC offset including adding a first DC offset to the baseband signal during the first chirp time period, and adding a second DC offset to the baseband signal during the second chirp time period, where the first DC offset is different from the second DC offset; and digitizing the DC offset baseband signal using an analog-to-digital converter to form a digitized baseband signal.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: August 23, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Peter Bogner, Christoph Affenzeller, Alexander Melzer, Martin Wiessflecker