Patents by Inventor Alexander Mukasyan

Alexander Mukasyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10100889
    Abstract: A brake disc rotor or stator is manufactured with slots in the interior face of the disc. A paste comprised of a fine powder of a carbide-forming metal along with fine carbon powder, suspended in an organic binder, is applied to the force-bearing areas in the rotor slot faces or the stator slot faces. The disc is then placed into a furnace in a nitrogen atmosphere and heated to the ignition temperature. When the furnace reaches the ignition temperature, a combustion reaction begins that creates a molten liquid ceramic material on the slot face. Upon cooling, the resulting brake disc has a tough, hard, abrasion-resistant ceramic surface on the portion of the brake disc slot that bears pressure.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: October 16, 2018
    Assignees: Honeywell International Inc., The University of Notre Dame Du Lac
    Inventors: Allen H. Simpson, Mark L. La Forest, Gregory Vanderheyden, Alexander Mukasyan
  • Patent number: 9580323
    Abstract: The invention provides methods for the combustion synthesis (CS) of graphene by a novel exothermic self-sustained reaction between a refractory ceramic compound and a carbon-containing polymer under an inert gas atmosphere. The synthesis of graphene was confirmed by both transmission electron microscopy and Raman spectroscopy. The graphene produced has very low (<1 wt. %) oxygen content. Fluorocarbon gases released due to decomposition of the carbon-containing polymer in the combustion wave can reduce the ceramic to a gas and mesoporous carbon particles and graphene layers. The method does not require an external energy source because it occurs in a self-sustained synergetic manner after ignition. The methods are flexible in terms of tuning the synthesis conditions for desired products, and the method can be scaled to provide kilogram quantities.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: February 28, 2017
    Assignee: University of Notre Dame Du Lac
    Inventors: Alexander Mukasyan, Khachatur Manukyan
  • Patent number: 9321692
    Abstract: Production of pore-free carbon/carbon-silicon carbide composite materials with mechanical properties making them suitable for use in such applications as the production of aircraft landing system brake components including brake discs. The method includes: providing a porous carbon-carbon composite preform; surrounding the porous carbon-carbon composite preform with silicon powder to form an intermediate construct; applying a uniaxial load to the construct; applying direct electrical current to an assembly containing the loaded construct of porous carbon-carbon preform surrounded by silicon powder, thereby melting the silicon powder and infiltrating the pores of the carbon-carbon preform with liquid silicon; and initiating a combustion-type reaction between the silicon and carbon in the preform, thereby forming silicon carbide in the preform.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: April 26, 2016
    Assignees: Honeywell International Inc., The University of Notre Dame du Lac
    Inventors: Manuel Koucouthakis, Douglas J. Steinke, Alexander Mukasyan, Jeremiah D. E. White
  • Publication number: 20140377160
    Abstract: The invention provides methods for the combustion synthesis (CS) of graphene by a novel exothermic self-sustained reaction between a refractory ceramic compound and a carbon-containing polymer under an inert gas atmosphere. The synthesis of graphene was confirmed by both transmission electron microscopy and Raman spectroscopy. The graphene produced has very low (<1 wt. %) oxygen content. Fluorocarbon gases released due to decomposition of the carbon-containing polymer in the combustion wave can reduce the ceramic to a gas and mesoporous carbon particles and graphene layers. The method does not require an external energy source because it occurs in a self-sustained synergetic manner after ignition. The methods are flexible in terms of tuning the synthesis conditions for desired products, and the method can be scaled to provide kilogram quantities.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 25, 2014
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Alexander Mukasyan, Khachatur Manukyan
  • Patent number: 8574470
    Abstract: Method of joining a carbon-carbon composite piece 30 together with a metal insert 20, e.g. in the manufacture of aircraft brake discs 10.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: November 5, 2013
    Assignees: Honeywell International Inc., The University of Notre Dame du Lac
    Inventors: Allen H. Simpson, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20130243953
    Abstract: A brake disc rotor or stator is manufactured with slots in the interior face of the disc. A paste comprised of a fine powder of a carbide-forming metal along with fine carbon powder, suspended in an organic binder, is applied to the force-bearing areas in the rotor slot faces or the stator slot faces. The disc is then placed into a furnace in a nitrogen atmosphere and heated to the ignition temperature. When the furnace reaches the ignition temperature, a combustion reaction begins that creates a molten liquid ceramic material on the slot face. Upon cooling, the resulting brake disc has a tough, hard, abrasion-resistant ceramic surface on the portion of the brake disc slot that bears pressure.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: Honeywell International Inc.
    Inventors: Allen H. Simpson, Mark L. La Forest, Gregory Vanderheyden, Alexander Mukasyan
  • Patent number: 8448685
    Abstract: An apparatus for bonding a first carbon composite to a second carbon composite through a reactant layer includes a housing, and a pair of conductive press plates electrically isolated from the housing. The press plates are adapted to position the two parts to be bonded with a reactant layer therebetween. The press plates are subjected to an electrical potential and a clamping force, sufficient to initiate a combustion reaction that creates a molten ceramic to bond together the carbon-carbon composites.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: May 28, 2013
    Assignees: Honeywell International Inc., University of Notre Dame du Lac
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Roger L. Klinedinst, Alexander Mukasyan, Charles D. D'Amico
  • Patent number: 8383197
    Abstract: A metal powder is applied to the surface of the area of a carbon-carbon composite brake disc to be protected against migration of antioxidant. The metal powder may be titanium powder or tungsten powder. A chemical reaction between the metal powder and carbon is then initiated by heating the powder-coated brake to the ignition temperature via application of electric current (Joule preheating) or by heating it in a furnace. Upon combustion, the metal particles react with carbon in the composite, forming liquid carbide that flows into pores of the composite brake disc to be protected.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: February 26, 2013
    Assignees: Honeywell International Inc., University of Notre Dame Du Lac
    Inventors: Mark L. La Forest, Allen H. Simpson, Slawomir Fryska, Alexander Mukasyan
  • Patent number: 8178212
    Abstract: Method for chemical bonding of fiberglass fibers to steel surfaces to prepare the steel for bonding with carbon composite material. This fiber-bonding step greatly increases the strength of the subsequent metal-composite bond. The fiberglass fibers which are chemically bonded to the steel provide a high surface area interface to entangle with carbon fibers in the composite component, and thereby inhibit crack formation on the boundary surface between the steel and composite components when they are bonded together.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 15, 2012
    Assignees: Honeywell International Inc., The University of Notre Dame du Lac
    Inventors: Allen H. Simpson, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20110155323
    Abstract: An apparatus for bonding a first carbon composite to a second carbon composite through a reactant layer includes a housing, and a pair of conductive press plates electrically isolated from the housing. The press plates are adapted to position the two parts to be bonded with a reactant layer therebetween. The press plates are subjected to an electrical potential and a clamping force, sufficient to initiate a combustion reaction that creates a molten ceramic to bond together the carbon-carbon composites.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 30, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Roger L. Klinedinst, Alexander Mukasyan, Charles D. D'Amico
  • Patent number: 7964172
    Abstract: A method for synthesis of high surface-area (>100 m2/g) and nanosized (?100 nm) silicon powder by initiation of self-sustained combustion reaction in a mixture of silicon dioxide and magnesium powders in a sealed reactor chamber under pressurized inert gas atmosphere. A specific feature of the method is rapid cooling of the product at a rate of 100 K/s to 400 K/s in the area directly behind the combustion front.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: June 21, 2011
    Inventors: Alexander Mukasyan, Vasiliy Mukasyan, Mikael Nersesyan
  • Patent number: 7939044
    Abstract: A method of manufacturing a silicon carbide powder with submicron size of powder particles wherein a homogeneous reactant mixture comprising a source of silicone, a source of carbon, and polytetrafluoroethylene is locally preheated in a sealed reaction chamber filled with an inert gas under pressure of 20 atm to 30 atm to a temperature sufficient to initiate an exothermic self-propagating reaction ranges from 650K to 900K. In the aforementioned homogeneous reactant mixture, the carbon source is used in the amount from 63 wt % to 68%, the silicon source is used in the amount of from 20 wt. % to 25 wt. %%, and the activated additive is used in the amount of from 8 wt. % to 15 wt. % per 100% of the entire homogeneous reactant mixture.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: May 10, 2011
    Inventors: Alexander Mukasyan, Vasiliy Mukasyan, Mikael Nersesyan, SurĂȘn Kharatyan, Hayk Khachatryan
  • Publication number: 20110085960
    Abstract: A method for synthesis of high surface-area (>100 m2/g) and nanosized (?100 nm) silicon powder by initiation of self-sustained combustion reaction in a mixture of silicon dioxide and magnesium powders in a sealed reactor chamber under pressurized inert gas atmosphere. A specific feature of the method is rapid cooling of the product at a rate of 100 K/s to 400 K/s in the area directly behind the combustion front.
    Type: Application
    Filed: October 13, 2009
    Publication date: April 14, 2011
    Inventors: Alexander Mukasyan, Vasiliy Mukasyan, Mikael Nersesyan
  • Patent number: 7922845
    Abstract: An apparatus for bonding a first carbon composite to a second carbon composite through a reactant layer includes a housing, and a pair of conductive press plates electrically isolated from the housing. The press plates are adapted to position the two parts to be bonded with a reactant layer therebetween. The press plates are subjected to an electrical potential and a clamping force, sufficient to initiate a combustion reaction that creates a molten ceramic to bond together the carbon-carbon composites.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 12, 2011
    Assignees: Honeywell International Inc., University of Notre Dame Du Lac
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Roger L. Klinedinst, Alexander Mukasyan, Charles D. D'Amico
  • Patent number: 7858187
    Abstract: Method of joining carbon-carbon composite pieces together, e.g. in the refurbishment of aircraft brake discs.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: December 28, 2010
    Assignees: Honeywell International Inc., The University of Notre Dame Du Lac
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20100304038
    Abstract: A metal powder is applied to the surface of the area of a carbon-carbon composite brake disc to be protected against migration of antioxidant. The metal powder may be titanium powder or tungsten powder. A chemical reaction between the metal powder and carbon is then initiated by heating the powder-coated brake to the ignition temperature via application of electric current (Joule preheating) or by heating it in a furnace. Upon combustion, the metal particles react with carbon in the composite, forming liquid carbide that flows into pores of the composite brake disc to be protected.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventors: Mark L. La Forest, Allen H. Simpson, Slawomir Fryska, Alexander Mukasyan
  • Publication number: 20100104465
    Abstract: Method of joining a carbon-carbon composite piece 30 together with a metal insert 20, e.g. in the manufacture of aircraft brake discs 10.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 29, 2010
    Inventors: Allen H. Simpson, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20100104886
    Abstract: Method for chemical bonding of fiberglass fibers to steel surfaces to prepare the steel for bonding with carbon composite material. This fiber-bonding step greatly increases the strength of the subsequent metal-composite bond. The fiberglass fibers which are chemically bonded to the steel provide a high surface area interface to entangle with carbon fibers in the composite component, and thereby inhibit crack formation on the boundary surface between the steel and composite components when they are bonded together.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 29, 2010
    Inventors: Allen H. Simpson, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20100044170
    Abstract: A brake disc rotor or stator is manufactured with slots in the interior face of the disc. A paste comprised of a fine powder of a carbide-forming metal along with fine carbon powder, suspended in an organic binder, is applied to the force-bearing areas in the rotor slot faces or the stator slot faces. The disc is then placed into a furnace in a nitrogen atmosphere and heated to the ignition temperature. When the furnace reaches the ignition temperature, a combustion reaction begins that creates a molten liquid ceramic material on the slot face. Upon cooling, the resulting brake disc has a tough, hard, abrasion-resistant ceramic surface on the portion of the brake disc slot that bears pressure.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Inventors: Allen H. Simpson, Mark L. La Forest, Gregory Vanderheyden, Alexander Mukasyan
  • Publication number: 20100032286
    Abstract: Production of pore-free carbon/carbon-silicon carbide composite materials with mechanical properties making them suitable for use in such applications as the production of aircraft landing system brake components including brake discs. The method includes: providing a porous carbon-carbon composite preform; surrounding the porous carbon-carbon composite preform with silicon powder to form an intermediate construct; applying a uniaxial load to the construct; applying direct electrical current to an assembly containing the loaded construct of porous carbon-carbon preform surrounded by silicon powder, thereby melting the silicon powder and infiltrating the pores of the carbon-carbon preform with liquid silicon; and initiating a combustion-type reaction between the silicon and carbon in the preform, thereby forming silicon carbide in the preform.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 11, 2010
    Inventors: Manuel KOUCOUTHAKIS, Douglas J. Steinke, Alexander Mukasyan, Jeremiah D. E. White