Patents by Inventor Alexander Niechayev

Alexander Niechayev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230144501
    Abstract: A photonic integrated circuit (PIC) is disclosed herein. The PIC can include a substrate, a main optical waveguide supported by the substrate. The main optical waveguide can be in communication with an electromagnetic radiation source, and configured to receive electromagnetic radiation from the electromagnetic radiation source. A first branch optical waveguide can be optically coupled to the main optical waveguide at a first location. An optical phased array (OPA) can include plurality of array elements, each having an optical antenna and an optical phase modulator. At least some array elements within a first subset of the plurality of array elements can be optically coupled to the first branch optical waveguide wherein locations of at least some of the plurality of array elements are aperiodic in one or more directions on the substrate.
    Type: Application
    Filed: November 10, 2022
    Publication date: May 11, 2023
    Inventors: Moe D. Soltani, James G. Leatham, Duane D. Smith, Alexander Niechayev
  • Patent number: 11644621
    Abstract: A device includes a photonic integrated circuit having an optical phased array. The optical phased array includes multiple array elements, where each array element includes (i) an antenna element configured to transmit or receive optical signals and (ii) a phase modulator configured to phase-shift the optical signals transmitted or received by the antenna element. The device also includes multiple digital register in integrated circuit (DRIIC) cells, where each DRIIC cell is associated with one of the array elements. The DRIIC cells are configured to receive digital inputs and to provide outputs to the phase modulators of the associated array elements in order to control the phase-shifts of the optical signals transmitted or received by the antenna elements based on the digital inputs.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: May 9, 2023
    Assignee: Raytheon Company
    Inventors: Thomas R. Yengst, James G. Leatham, Alexander Niechayev
  • Patent number: 11476576
    Abstract: A device includes a photonic integrated circuit (PIC), which includes an optical phased array. The optical phased array includes multiple array elements, where each array element includes (i) an antenna element configured to transmit or receive optical signals and (ii) a phase modulator configured to modulate the optical signals transmitted or received by the antenna element. The PIC also includes at least one of (i) a source laser configured to generate optical energy, where the antenna elements are configured to transmit the optical signals based on the optical energy, and (ii) a receiver configured to receive and process the optical signals received by the antenna elements.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: October 18, 2022
    Assignee: Raytheon Company
    Inventors: Stephen P. Palese, Moe D. Soltani, Thomas R. Yengst, Charley A. Fodran, Joseph Marron, Duane D. Smith, Alexander Niechayev, Jeffrey P. Tate, James G. Leatham
  • Publication number: 20220255221
    Abstract: A device includes a photonic integrated circuit (PIC), which includes an optical phased array. The optical phased array includes multiple array elements, where each array element includes (i) an antenna element configured to transmit or receive optical signals and (ii) a phase modulator configured to modulate the optical signals transmitted or received by the antenna element. The PIC also includes at least one of (i) a source laser configured to generate optical energy, where the antenna elements are configured to transmit the optical signals based on the optical energy, and (ii) a receiver configured to receive and process the optical signals received by the antenna elements.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Stephen P. Palese, Moe D. Soltani, Thomas R. Yengst, Charley A. Fodran, Joseph Marron, Duane D. Smith, Alexander Niechayev, Jeffrey P. Tate, James G. Leatham
  • Publication number: 20220252786
    Abstract: A device includes a photonic integrated circuit having an optical phased array. The optical phased array includes multiple array elements, where each array element includes (i) an antenna element configured to transmit or receive optical signals and (ii) a phase modulator configured to phase-shift the optical signals transmitted or received by the antenna element. The device also includes multiple digital register in integrated circuit (DRIIC) cells, where each DRIIC cell is associated with one of the array elements. The DRIIC cells are configured to receive digital inputs and to provide outputs to the phase modulators of the associated array elements in order to control the phase-shifts of the optical signals transmitted or received by the antenna elements based on the digital inputs.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Thomas R. Yengst, James G. Leatham, Alexander Niechayev
  • Patent number: 9519049
    Abstract: Methods and apparatus to receive radar pulses, process the received pulses using weighted finite state machine to learn a model of an unknown emitter generating the received radar pulses, and estimate a state/function of the unknown emitter based on the received radar pulses using the learned model, and predict the next state/function of the unknown emitter based on the received radar pulses and applying maximum likelihood estimation.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 13, 2016
    Assignee: Raytheon Company
    Inventors: Shubha Kadambe, Alexander Niechayev, Ted Y. Lumanlan
  • Patent number: 6809681
    Abstract: An uncorrelated clutter noise cancellation method and apparatus employing a measured ambiguity function sample for each randomly-modulated transmission pulse in a randomly-modulated pulsed Doppler radar system. The ambiguity function samples are calculated from a stored copy of the randomly-modulated transmission signal. Estimates of the uncorrelated clutter backscatter are first developed by calculating the amplitude and phase of the radar returns detected in target range and velocity cells corresponding to stationary scatterers. The stationary scatterer contribution to each target cell, computed according to the sample ambiguity function, is then subtracted to eliminate the uncorrelated noise component in the return signal for the target cell. This clutter cancellation technique does not rely on correlations between the randomly-modulated transmission signal and the clutter return signal.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: October 26, 2004
    Assignee: Raytheon Company
    Inventor: Alexander Niechayev
  • Patent number: 6392585
    Abstract: A radar system (10) which transmits a random noise signal. The transmitted signal is embodied as an electromagnetic signal and is directed at an object or target. The object or target reflects at least a portion of the electromagnetic signal which is returned to the radar system. An image of the electromagnetic random noise signal is stored in memory (16) and compared with the returned modulated signal. Based on the correlation value, a determination is made regarding the object or target. In a particular implementation, the radar system is used in a target detection device (TDD) (10) in order to determine the distance from the target or object to the device and the relative velocity of the target or object and the device. When the target or object reaches a predetermined distance and also satisfies any other system requirements, the TDD (10) initiates a detonation signal which causes detonation of the missile or warhead.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: May 21, 2002
    Assignee: Raytheon Company
    Inventors: Jimmie D. Huff, Alexander Niechayev
  • Publication number: 20010024170
    Abstract: A radar system (10) which transmits a random noise signal. The transmitted signal is embodied as an electromagnetic signal and is directed at an object or target. The object or target reflects at least a portion of the electromagnetic signal which is returned to the radar system. An image of the electromagnetic random noise signal is stored in memory (16) and compared with the returned modulated signal. Based on the correlation value, a determination is made regarding the object or target. In a particular implementation, the radar system is used in a target detection device (TDD) (10) in order to determine the distance from the target or object to the device and the relative velocity of the target or object and the device. When the target or object reaches a predetermined distance and also satisfies any other system requirements, the TDD (10) initiates a detonation signal which causes detonation of the missile or warhead.
    Type: Application
    Filed: June 5, 2001
    Publication date: September 27, 2001
    Inventors: Jimmie D. Huff, Alexander Niechayev
  • Patent number: 6271786
    Abstract: A radar system (10) which transmits a random noise signal. The transmitted signal is embodied as an electromagnetic signal and is directed at an object or target. The object or target reflects at least a portion of the electromagnetic signal which is returned to the radar system. An image of the electromagnetic random noise signal is stored in memory (16) and compared with the returned modulated signal. Based on the correlation value, a determination is made regarding the object or target. In a particular implementation, the radar system is used in a target detection device (TDD) (10) in order to determine the distance from the target or object to the device and the relative velocity of the target or object and the device. When the target or object reaches a predetermined distance and also satisfies any other system requirements, the TDD (10) initiates a detonation signal which causes detonation of the missile or warhead.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 7, 2001
    Assignee: Raytheon Company
    Inventors: Jimmie D. Huff, Alexander Niechayev
  • Patent number: 6121915
    Abstract: An automotive radar system for use with an automotive control system such as a collision avoidance or smart cruise control system, for example. A wide-bandwidth, random noise signal generated at an RF frequency that is transmitted by a transmitter and reflected from targets in the vicinity of the system. The random noise modulation is sampled prior to transmission in a noise source sampler and this sampled image of the transmitted noise is stored and passed through a series of delay stages that are formed in a correlator. The noise signal reflected from objects is processed by a homodyne receiver and also sampled in a receiver sampler. The noise samples from the signal return are passed to the correlator where they are cross correlated with the delayed images of the transmit noise. The output from the correlator for each unit of delay (range gate) is processed in a digital signal processor to find the range and closing velocity (Doppler frequency) of objects in the field of view.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: September 19, 2000
    Assignee: Raytheon Company
    Inventors: George R. Cooper, Jimmie D. Huff, Alexander Niechayev