Patents by Inventor Alexander P. Fields

Alexander P. Fields has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220119890
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel to detect cancer and particular types of cancer.
    Type: Application
    Filed: July 23, 2021
    Publication date: April 21, 2022
    Inventors: Oliver Claude Venn, Alexander P. Fields, Samuel S. Gross, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Onur Sakarya, M. Cyrus Maher, Arash Jamshidi
  • Publication number: 20220098672
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel for detection of cancer tissue of origin (e.g., types of cancer).
    Type: Application
    Filed: August 4, 2021
    Publication date: March 31, 2022
    Inventors: Oliver Claude Venn, Alexander P. Fields, Samuel S. Gross, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Onur Sakarya, M. Cyrus Maher, Arash Jamshidi
  • Publication number: 20220090207
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel to detect cancer and particular types of cancer.
    Type: Application
    Filed: July 23, 2021
    Publication date: March 24, 2022
    Inventors: Oliver Claude Venn, Alexander P. Fields, Samuel S. Gross, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Onur Sakarya, M. Cyrus Maher, Arash Jamshidi
  • Publication number: 20220064737
    Abstract: The present description provides a hematological disorder (HD) assay panel for targeted detection of methylation patterns or variants specific to various hematological disorders, such as clonal hematopoiesis of indeterminate potential (CHIP) and blood cancers, such as leukemia, lymphoid neoplasms (e.g. lymphoma), multiple myeloma, and myeloid neoplasm. Further provided herein includes methods of designing, making, and using the HD assay panel for detection of various hematological disorders.
    Type: Application
    Filed: August 4, 2021
    Publication date: March 3, 2022
    Inventors: Samuel S. Gross, Oliver Claude Venn, Alexander P. Fields, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Arash Jamshidi
  • Publication number: 20210395841
    Abstract: Systems and methods described herein include detecting a presence or absence of HPV in a biological sample having cell-free nucleic acids from a subject and potentially cell-free nucleic acids from an HPV strain. Based on a detection of HPV viral nucleic acids in the biological sample, an HPV-based multiclass classifier that predicts a score for each HPV-associated cancer type is applied. The HPV-based multiclass classifier is trained on a training set of HPV-positive cancer samples. An HPV-associated cancer associated with the biological sample is determined based on the scores predicted by the HPV multiclass classifier.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Applicant: GRAIL, Inc.
    Inventors: Robert Abe Paine Calef, M. Cyrus Maher, John F. Beausang, Joerg Bredno, Oliver Claude Venn, Alexander P. Fields, Arash Jamshidi
  • Publication number: 20210327534
    Abstract: Methods for determining a disease condition of a subject of a species are provided that comprises obtaining a dataset of fragment methylation patterns determined by methylation sequencing of nucleic acid from a biological sample of the subject. A fragment methylation pattern comprises the methylation state of each CpG site in the fragment. A patch including a channel comprising parameters for the methylation status of respective CpG sites in a set of CpG sites in a reference genome represented by the patch is constructed by populating, for each respective fragment in the plurality of fragments that aligns to the set of CpG sites, an instance of all or a portion of the plurality of parameters based on the methylation pattern of the respective fragment. Application of the patch to a patch convolutional neural network determines the disease condition of the subject.
    Type: Application
    Filed: December 11, 2020
    Publication date: October 21, 2021
    Applicant: GRAIL, INC.
    Inventors: Virgil Nicula, Ognjen Nikolic, Yasushi Saito, Marius Eriksen, Josh Newman, Darya Filippova, Alexander Yip, Oliver Venn, Joerg Bredno, Qinwen Liu, Alexander P. Fields
  • Publication number: 20210025011
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel for diagnosis of cancer.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Inventors: Samuel S. Gross, Hamid Amini, Arash Jamshidi, Seyedmehdi Shojaee, Srinka Ghosh, Rongsu Qi, M. Cyrus Maher, Alexander P. Fields, Oliver Claude Venn
  • Publication number: 20210017609
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel for diagnosis of cancer.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Samuel S. Gross, Hamid Amini, Arash Jamshidi, Seyedmehdi Shojaee, Srinka Ghosh, Rongsu Qi, M. Cyrus Maher, Alexander P. Fields, Oliver Claude Venn
  • Publication number: 20200365229
    Abstract: In various embodiments, an analytics system uses models to determine features and classification of disease states. A disease state can indicate presence or absence of cancer, a cancer type, or a cancer tissue of origin. The models can include a binary classifier and a tissue of origin classifier. The analytics system can process sequence reads from test biological samples to generate data for training the classifiers. The analytics system can also use combinations of machine learning techniques to train the models, which can include a multilayer perceptron. In some embodiments, the analytics system uses methylation information to train the models to determine predictions regarding disease state.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 19, 2020
    Inventors: Alexander P. Fields, John F. Beausang, Oliver Claude Venn, Arash Jamshidi, M. Cyrus Maher, Qinwen Liu, Jan Schellenberger, Joshua Newman, Robert Calef, Samuel S. Gross
  • Publication number: 20200239964
    Abstract: A system and method for determining a presence of cancer in a test sample from a test subject comprising a set of fragments of deoxyribonucleic acid (DNA). The fragments may be identified through probabilistic analyses or identified when determined to be hypermethylated or hypomethylated. The system generates a test feature vector with a score for each CpG site for use in a trained model. The score is based on a number of the fragments in the test sample that overlap the CpG site. The system inputs the test feature vector into the trained model. The trained model has a function that generates a cancer prediction based on the test feature vector and a set of classification parameters. The cancer prediction for the test sample may include a cancer prediction value for each cancer type that describes a likelihood the test sample is of that particular cancer type.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 30, 2020
    Inventors: Samuel S. Gross, Oliver Claude Venn, Alexander P. Fields, Gordon Cann, Arash Jamshidi
  • Publication number: 20200239965
    Abstract: A method and system for determining one or more sources of a cell free deoxyribonucleic acid (cfDNA) test sample from a test subject. The cfDNA test sample contains a plurality of deoxyribonucleic acid (DNA) molecules with numerous CpG sites that may be methylated or unmethylated. A trained deconvolution model comprises a plurality of methylation parameters, including a methylation level at each CpG site for each source, and a function relating a sample vector as input and a source of origin prediction as output. The method generates a test sample vector comprising a site methylation metric relating to DNA molecules from the test sample that are methylated at that CpG site. The method inputs the test sample vector into the trained deconvolution model to generate a source of origin prediction indicating a predicted DNA molecule contribution of each source.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 30, 2020
    Inventors: Alexander P. Fields, Oliver Claude Venn, Gordon Cann, Samuel S. Gross, Arash Jamshidi