Patents by Inventor Alexander Pesch

Alexander Pesch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10359507
    Abstract: A LIDAR system includes one or more LIDAR sensor assemblies, which may be mounted to a vehicle or other object. Each LIDAR sensor assembly includes a laser light source to emit laser light, and a light sensor to produce a light signal in response to sensing reflected light corresponding to reflection of the laser light emitted by the laser light source from a reference surface that is fixed in relation to the LIDAR sensor assembly. A controller of the LIDAR sensor assembly may calibrate the LIDAR sensor assembly based at least in part on a signal from the light sensor indicating detection of reflected light corresponding to reflection of a pulse of laser light reflected from the reference surface.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 23, 2019
    Assignee: Panosense Inc.
    Inventors: Adam Berger, Riley Andrews, Ryan McMichael, Denis Nikitin, Brian Alexander Pesch, Brian Pilnick
  • Patent number: 10295660
    Abstract: Techniques are described for aligning optical components within a LIDAR assembly. The techniques may be performed to align the optical components during manufacturing or assembly of the LIDAR assembly. For example, a first optical element (e.g., one of a light source or light sensor) may be installed in the LIDAR assembly. An optimal alignment for a second optical element (e.g., the other of the light source or light sensor) may be determined and the second optical element may be installed at the optimal alignment. The optimal alignment for the second optical element may be determined based on detected signals, for example, which may correspond to an alignment resulting in a strongest return signal, highest quality return signal, and/or minimal interference. Additionally, or alternatively, techniques may be used to align optical components at runtime by using an actuator to move one or more components of the LIDAR assembly during operation.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 21, 2019
    Assignee: Panosense Inc.
    Inventors: Ryan McMichael, Adam Berger, Brian Pilnick, Denis Nikitin, Brian Alexander Pesch
  • Publication number: 20180188361
    Abstract: A LIDAR system includes one or more LIDAR sensor assemblies, which may be mounted to a vehicle or other object. Each LIDAR sensor assembly includes a laser light source to emit laser light, and a light sensor to produce a light signal in response to sensing reflected light corresponding to reflection of the laser light emitted by the laser light source from a reference surface that is fixed in relation to the LIDAR sensor assembly. A controller of the LIDAR sensor assembly may calibrate the LIDAR sensor assembly based at least in part on a signal from the light sensor indicating detection of reflected light corresponding to reflection of a pulse of laser light reflected from the reference surface.
    Type: Application
    Filed: April 13, 2017
    Publication date: July 5, 2018
    Inventors: Adam Berger, Riley Andrews, Ryan McMichael, Denis Nikitin, Brian Alexander Pesch, Brian Pilnick
  • Patent number: 7443589
    Abstract: The invention includes an optics array for beam shaping, which uses a micro lens combination, whose polygonal micro lenses are arranged in a level, whereby the geometric arrangement of the individual lenses and their diameters follow a distribution pattern. It is characterized by the fact that the number of corners as well as the length of the lens rims of each of the individual lenses of the micro lens combination is defined by a point distribution (P) of Voronoi points (2), which define a Voronoi Region (VR(p)) which can be described by the following equations for a Voronoi lens (1).
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: October 28, 2008
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Lars Erdmann, Alexander Pesch, Arnaud Deparnay
  • Publication number: 20060238876
    Abstract: The invention includes an optics array for beam shaping, which uses a micro lens combination, whose polygonal micro lenses are arranged in a level, whereby the geometric arrangement of the individual lenses and their diameters follow a distribution pattern. It is characterized by the fact that the number of corners as well as the length of the lens rims of each of the individual lenses of the micro lens combination is defined by a point distribution (P) of Voronoi points (2), which define a Voronoi Region (VR(p)) which can be described by the following equations for a Voronoi lens (1).
    Type: Application
    Filed: April 26, 2006
    Publication date: October 26, 2006
    Inventors: Lars Erdmann, Alexander Pesch, Arnaud Deparnay