Patents by Inventor Alexander Pines

Alexander Pines has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7053610
    Abstract: Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: May 30, 2006
    Assignee: The Regents of th University of California
    Inventors: John Clarke, Robert McDermott, Alexander Pines, Andreas Heinz Trabesinger
  • Publication number: 20060091881
    Abstract: Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
    Type: Application
    Filed: November 3, 2004
    Publication date: May 4, 2006
    Inventors: John Clarke, Nathan Kelso, SeungKyun Lee, Michael Moessle, Whittier Myers, Robert McDermott, Bernard Haken, Alexander Pines, Andreas Trabesinger
  • Publication number: 20050134262
    Abstract: Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
    Type: Application
    Filed: November 22, 2004
    Publication date: June 23, 2005
    Inventors: John Clarke, Robert McDermott, Alexander Pines, Andreas Trabesinger
  • Patent number: 6885192
    Abstract: Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned de superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 26, 2005
    Assignee: The Regents of the University of California
    Inventors: John Clarke, Robert McDermott, Alexander Pines, Andreas Heinz Trabesinger
  • Publication number: 20050030026
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Application
    Filed: September 13, 2004
    Publication date: February 10, 2005
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Patent number: 6818202
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: November 16, 2004
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Publication number: 20040062715
    Abstract: A functionalized active-nucleus complex sensor that selectively associates with one or more target species. The functionalized active-nucleus complex comprises an active-nucleus and a targeting carrier. The targeting carrier comprises a first binding region having at least a minimal transient binding of the active-nucleus to form the functionalized active-nucleus complex that produces a detectable signal when the functionalized active-nucleus complex associates with the target species and a second binding region that selectively associates with the target species. Included is a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species.
    Type: Application
    Filed: September 15, 2003
    Publication date: April 1, 2004
    Inventors: Alexander Pines, David E. Wemmer, Megan Spence, Seth Rubin
  • Publication number: 20040027125
    Abstract: Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned de superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
    Type: Application
    Filed: February 6, 2003
    Publication date: February 12, 2004
    Inventors: John Clarke, Robert McDermott, Alexander Pines, Andreas Heinz Trabesinger
  • Patent number: 6674282
    Abstract: A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: January 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Carlos A. Meriles, Henrike Heise, Dimitrios Sakellariou, Adam Moule
  • Patent number: 6652833
    Abstract: A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: November 25, 2003
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, David E. Wemmer, Megan Spence, Seth Rubin
  • Publication number: 20030165431
    Abstract: An active-nucleus sensor or a functionalized active-nucleus complex sensor is utilized in a method for detecting conformational change and binding event information in a targeted molecule, wherein the sensor does not participate in the conformational change or binding event. The method directly or indirectly detects the occurrence, deletion, shift, or any measurable change in a magnetic resonance signal with a unique magnetic resonance property from the active-nuclei, frequently hyperpolarized 129Xe.
    Type: Application
    Filed: October 9, 2002
    Publication date: September 4, 2003
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Pines, David E. Wemmer, Megan Spence, Seth Rubin, E. Janette Ruiz, Ivan E. Dimitrov
  • Publication number: 20030077224
    Abstract: An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb-Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 24, 2003
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Pines, Sunil Saxena, Adam Moule, Megan Spence, Juliette A. Seeley, Kimberly L. Pierce, Song-I Han, Josef Granwehr
  • Publication number: 20030052677
    Abstract: A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.
    Type: Application
    Filed: August 13, 2002
    Publication date: March 20, 2003
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Pines, Carlos A. Meriles, Henrike Heise, Dimitrios Sakellariou, Adam Moule
  • Publication number: 20030017110
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Application
    Filed: June 5, 2002
    Publication date: January 23, 2003
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Patent number: 6426058
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: July 30, 2002
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Publication number: 20020094317
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Application
    Filed: March 28, 1997
    Publication date: July 18, 2002
    Inventors: ALEXANDER PINES, THOMAS BUDINGER, GIL NAVON, YI-QIAO SONG, STEPHAN APPELT, ANGELO BIFONE, REBECCA TAYLOR, BOYD GOODSON, ROBERTO SEYDOUX, TOOMAS ROOM, TANJA PIETRASS
  • Publication number: 20020037253
    Abstract: A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.
    Type: Application
    Filed: July 11, 2001
    Publication date: March 28, 2002
    Applicant: The Reagents of the University of California
    Inventors: Alexander Pines, David E. Wemmer, Megan Spence, Seth Rubin
  • Patent number: 6159444
    Abstract: A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: December 12, 2000
    Assignee: The Regents of the University of California
    Inventors: Klaus Schlenga, Ricardo E. de Souza, Annjoe Wong-Foy, John Clarke, Alexander Pines
  • Patent number: 4968939
    Abstract: An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.
    Type: Grant
    Filed: June 27, 1989
    Date of Patent: November 6, 1990
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Ago Samoson
  • Patent number: 4968938
    Abstract: An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.
    Type: Grant
    Filed: June 27, 1989
    Date of Patent: November 6, 1990
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Ago Samoson