Patents by Inventor Alexander Popov
Alexander Popov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240410981Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: ApplicationFiled: August 21, 2024Publication date: December 12, 2024Inventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Patent number: 12164059Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: GrantFiled: July 15, 2021Date of Patent: December 10, 2024Assignee: NVIDIA CorporationInventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Patent number: 12080078Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: GrantFiled: August 25, 2022Date of Patent: September 3, 2024Inventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Patent number: 12072443Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: GrantFiled: July 15, 2021Date of Patent: August 27, 2024Inventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Publication number: 20240273919Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: ApplicationFiled: April 26, 2024Publication date: August 15, 2024Inventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Patent number: 12050285Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.Type: GrantFiled: October 28, 2022Date of Patent: July 30, 2024Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
-
Patent number: 11960026Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.Type: GrantFiled: October 28, 2022Date of Patent: April 16, 2024Assignee: NVIDIA CorporationInventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
-
Publication number: 20240096102Abstract: Systems and methods are disclosed that relate to freespace detection using machine learning models. First data that may include object labels may be obtained from a first sensor and freespace may be identified using the first data and the object labels. The first data may be annotated to include freespace labels that correspond to freespace within an operational environment. Freespace annotated data may be generated by combining the one or more freespace labels with second data obtained from a second sensor, with the freespace annotated data corresponding to a viewable area in the operational environment. The viewable area may be determined by tracing one or more rays from the second sensor within the field of view of the second sensor relative to the first data. The freespace annotated data may be input into a machine learning model to train the machine learning model to detect freespace using the second data.Type: ApplicationFiled: August 7, 2023Publication date: March 21, 2024Inventors: Alexander POPOV, David NISTER, Nikolai SMOLYANSKIY, PATRIK GEBHARDT, Ke CHEN, Ryan OLDJA, Hee Seok LEE, Shane MURRAY, Ruchi BHARGAVA, Tilman WEKEL, Sangmin OH
-
Patent number: 11915493Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: GrantFiled: August 25, 2022Date of Patent: February 27, 2024Assignee: NVIDIA CorporationInventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Publication number: 20240061075Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: ApplicationFiled: October 24, 2023Publication date: February 22, 2024Inventors: Alexander POPOV, Nikolai SMOLYANSKIY, Ryan OLDJA, Shane Murray, Tilman WEKEL, David NISTER, Joachim PEHSERL, Ruchi BHARGAVA, Sangmin OH
-
Patent number: 11885907Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: GrantFiled: March 31, 2020Date of Patent: January 30, 2024Assignee: NVIDIA CorporationInventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
-
Publication number: 20240029447Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: ApplicationFiled: October 6, 2023Publication date: January 25, 2024Inventors: Nikolai SMOLYANSKIY, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Publication number: 20230281847Abstract: In various examples, methods and systems are provided for estimating depth values for images (e.g., from a monocular sequence). Disclosed approaches may define a search space of potential pixel matches between two images using one or more depth hypothesis planes based at least on a camera pose associated with one or more cameras used to generate the images. A machine learning model(s) may use this search space to predict likelihoods of correspondence between one or more pixels in the images. The predicted likelihoods may be used to compute depth values for one or more of the images. The predicted depth values may be transmitted and used by a machine to perform one or more operations.Type: ApplicationFiled: February 3, 2022Publication date: September 7, 2023Inventors: Yiran Zhong, Charles Loop, Nikolai Smolyanskiy, Ke Chen, Stan Birchfield, Alexander Popov
-
Publication number: 20230049567Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.Type: ApplicationFiled: October 28, 2022Publication date: February 16, 2023Inventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
-
Publication number: 20220415059Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: ApplicationFiled: August 25, 2022Publication date: December 29, 2022Inventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Patent number: 11531088Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.Type: GrantFiled: March 31, 2020Date of Patent: December 20, 2022Assignee: NVIDIA CORPORATIONInventors: Alexander Popov, Nikolai Smolyanskiy, Ryan Oldja, Shane Murray, Tilman Wekel, David Nister, Joachim Pehserl, Ruchi Bhargava, Sangmin Oh
-
Patent number: 11532168Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: GrantFiled: June 29, 2020Date of Patent: December 20, 2022Assignee: NVIDIA CORPORATIONInventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister
-
Publication number: 20220012470Abstract: An intelligent assistant records speech spoken by a first user and determines a self-selection score for the first user. The intelligent assistant sends the self-selection score to another intelligent assistant, and receives a remote-selection score for the first user from the other intelligent assistant. The intelligent assistant compares the self-selection score to the remote-selection score. If the self-selection score is greater than the remote-selection score, the intelligent assistant responds to the first user and blocks subsequent responses to all other users until a disengagement metric of the first user exceeds a blocking threshold. If the self-selection score is less than the remote-selection score, the intelligent assistant does not respond to the first user.Type: ApplicationFiled: September 27, 2021Publication date: January 13, 2022Applicant: Microsoft Technology Licensing, LLCInventors: Kazuhito KOISHIDA, Alexander A. POPOV, Uros BATRICEVIC, Steven Nabil BATHICHE
-
Patent number: 11194998Abstract: An intelligent assistant records speech spoken by a first user and determines a self-selection score for the first user. The intelligent assistant sends the self-selection score to another intelligent assistant, and receives a remote-selection score for the first user from the other intelligent assistant. The intelligent assistant compares the self-selection score to the remote-selection score. If the self-selection score is greater than the remote-selection score, the intelligent assistant responds to the first user and blocks subsequent responses to all other users until a disengagement metric of the first user exceeds a blocking threshold. If the self-selection score is less than the remote-selection score, the intelligent assistant does not respond to the first user.Type: GrantFiled: July 24, 2017Date of Patent: December 7, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Kazuhito Koishida, Alexander A Popov, Uros Batricevic, Steven Nabil Bathiche
-
Publication number: 20210342608Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.Type: ApplicationFiled: July 15, 2021Publication date: November 4, 2021Inventors: Nikolai Smolyanskiy, Ryan Oldja, Ke Chen, Alexander Popov, Joachim Pehserl, Ibrahim Eden, Tilman Wekel, David Wehr, Ruchi Bhargava, David Nister