Patents by Inventor Alexander Ray
Alexander Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250208916Abstract: A method includes receiving a request to provision a plurality of containers including a resource requirement representing an amount of resources the respective container requires. The method also includes provisioning a machine that includes a first amount of resources. The method includes determining a second amount of resources based on a sum of each resource requirement of each respective container. The second amount of resources is less than the first amount of resources. The second amount of resources is greater than the resource requirement of each respective container. The method includes restricting each respective container of the plurality of containers to the second amount of resources that prohibits each respective container from utilizing more resources than the second amount of resources. After restricting each respective container of the plurality of contains to the second amount of resources, the method includes executing the plurality of containers on the machine.Type: ApplicationFiled: December 18, 2024Publication date: June 26, 2025Applicant: Google LLCInventors: Alexander Ray Curtis, Pawel Tadeusz Kepka, Vyacheslav Vladimirovich Malyugin, Adin Matthew Scannell, David G. Porter, Pawel Jacob Mendelski, Jayant Jain, Marian Kedzierski, William Mcguffin Wright Denniss, Jeremy Olmsted-Thompson
-
Patent number: 11954820Abstract: One embodiment of the present invention sets forth a technique for adding dimensions to a target drawing. The technique includes generating a first set of node embeddings for a first set of nodes included in a target graph that represents the target drawing. The technique also includes receiving a second set of node embeddings for a second set of nodes included in a source graph that represents a source drawing, where one or more nodes included in the second set of nodes are associated with one or more source dimensions included in the source drawing. The technique further includes generating a set of mappings between the first and second sets of nodes based similarities between the first set of node embeddings and the second set of node embeddings, and automatically placing the one or more source dimensions within the target drawing based on the set of mappings.Type: GrantFiled: July 13, 2021Date of Patent: April 9, 2024Assignee: AUTODESK, INC.Inventors: Thomas Ryan Davies, Alexander Ray Carlson, Aditya Sanghi, Tarkeshwar Kumar Shah, Divya Sivasankaran, Anup Bhalchandra Walvekar, Ran Zhang
-
Publication number: 20230038611Abstract: Localized stresses can be modulated in a film deposited on a bowed semiconductor substrate by selectively and locally curing the film by ultraviolet (UV) radiation. A bowed semiconductor substrate can be asymmetrically bowed. A UV-curable film is deposited on the front side or the backside of the bowed semiconductor substrate. A mask is provided between the UV-curable film and a UV source, where openings in the mask are patterned to selectively define exposed regions and non-exposed regions of the UV-curable film. Exposed regions of the UV-curable film modulate localized stresses to mitigate bowing in the bowed semiconductor substrate.Type: ApplicationFiled: January 25, 2021Publication date: February 9, 2023Applicant: Lam Research CorporationInventors: Anirvan SIRCAR, Fayaz A. SHAIKH, Kevin M. MCLAUGHLIN, Alexander Ray FOX
-
Publication number: 20220318947Abstract: One embodiment of the present invention sets forth a technique for adding dimensions to a target drawing. The technique includes generating a first set of node embeddings for a first set of nodes included in a target graph that represents the target drawing. The technique also includes receiving a second set of node embeddings for a second set of nodes included in a source graph that represents a source drawing, where one or more nodes included in the second set of nodes are associated with one or more source dimensions included in the source drawing. The technique further includes generating a set of mappings between the first and second sets of nodes based similarities between the first set of node embeddings and the second set of node embeddings, and automatically placing the one or more source dimensions within the target drawing based on the set of mappings.Type: ApplicationFiled: July 13, 2021Publication date: October 6, 2022Inventors: Thomas Ryan DAVIES, Alexander Ray CARLSON, Aditya SANGHI, Tarkeshwar Kumar SHAH, Divya SIVASANKARAN, Anup Bhalchandra WALVEKAR, Ran ZHANG
-
Patent number: 11369021Abstract: On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.Type: GrantFiled: March 16, 2021Date of Patent: June 21, 2022Assignee: Nthdegree Technologies Worldwide Inc.Inventors: Alexander Ray, Richard Blanchard, Shawn Barber, David Moffenbeier
-
Patent number: 11063927Abstract: Techniques for an identity-aware load balancer (ALB) are described. An identity-aware ALB can securely authenticate users when accessing web-based applications accessed through the ALB, or a node of the ALB. An application owner can configure an authentication action in the ALB. When a request for the application is received, the ALB inspects the request for a session cookie to determine whether the requesting user is logged-in. If the request includes a session cookie, the ALB can decrypt the session cookie and provide identity information with the request to the application. If no session cookie is included, or if the session cookie is expired, the ALB can authenticate the user with an identity provider specified in the authentication action. Integrating authentication into an ALB simplifies application development and maintenance, and improves security, since fewer changes to the application stack reduce the chances of errors being introduced.Type: GrantFiled: May 2, 2018Date of Patent: July 13, 2021Assignee: Amazon Technologies, Inc.Inventors: Lodaya Varun Mukesh, Hamza Muhammad Arain, Anurag Sanjay Katey, Jing Gao, Alexander Ray Curtis, Oleg Mitrofanov, Prerna Rustagi
-
Publication number: 20210204405Abstract: On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.Type: ApplicationFiled: March 16, 2021Publication date: July 1, 2021Inventors: Alexander Ray, Richard Blanchard, Shawn Barber, David Moffenbeier
-
Patent number: 10980121Abstract: On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.Type: GrantFiled: January 28, 2016Date of Patent: April 13, 2021Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.Inventors: Alexander Ray, Richard Blanchard, Shawn Barber, David Moffenbeier
-
Patent number: 10018449Abstract: An active target has a target face that is backlit by LEDs, where a detection layer behind the target face detects a new projectile hole in the target, such as from a gun or an arrow. The detection layer may be formed of one or more resistive layers, and the detected increase in resistance due to a new projectile hole being created is sensed and correlated to an XY position of the hole. The location of the new hole is transmitted via an RF signal to the shooter's portable device, such as a smartphone, and the shooter sees the location of the hit relative to the target face in real time. The LEDs may be dynamically controlled. The target is disposable and is supported by a support base containing the control electronics and transmitter.Type: GrantFiled: January 12, 2016Date of Patent: July 10, 2018Assignee: Nthdegree Technologies Worldwide Inc.Inventors: Jeffrey Baldridge, Alexander Ray, Bradley Whaley, Darin Wagner, Neil O. Shotton, Richard A. Blanchard, Shelby Jueden, Steven Roach, Larry Todd Biggs, Eric Kahrs
-
Patent number: 9506608Abstract: LED dies are suspended in an ink and printed on a first support substrate to form a light emitting layer having a light emitting surface emitting primary light, such as blue light. A mixture of a transparent binder, phosphor powder, and transparent glass beads is formed as an ink and printed over the light emitting surface. The mixture forms a wavelength conversion layer when cured. The beads are preferably sized so that the tops of the beads protrude completely through the conversion layer. Some of the primary light passes through the beads with virtually no attenuation or backscattering, and some of the primary light is converted by the phosphor to secondary light. The combination of the secondary light and the primary light passing though the beads may form white light. The overall color is highly controllable by controlling the percentage weight of the beads.Type: GrantFiled: June 3, 2014Date of Patent: November 29, 2016Assignee: Nthdegree Technologies Worldwide Inc.Inventors: William J. Ray, Reuben Rettke, Mark D. Lowenthal, Alexander Ray
-
Publication number: 20160240118Abstract: Microscopic LED dice are printed in groups, to form pixels, on a thin transparent substrate, and the LEDs in each pixel are sandwiched between two transparent conductor layers to connect the LEDs in parallel. This forms a single 2-dimensional pixel layer that is substantially transparent, where the pixels are individually addressable. Multiple pixel layers are stacked with an index-matched spacer layer therebetween to form a 3-dimensional array of pixels. If the 3-D display is formed as a cube, the viewing window may be the top pixel layer. All pixel layers are simultaneously viewable through the viewing window since each layer is transparent. Accordingly, 3-dimensional images may be displayed. In another embodiment, one or more LED pixels layers are folded, like an accordion, to achieve a stereoscopic effect so that the left and right eyes see different images to convey depth.Type: ApplicationFiled: January 21, 2016Publication date: August 18, 2016Inventors: Alexander Ray, Bradley Oraw, Joseph Nathan, Neil Shotton, Richard Blanchard
-
Publication number: 20160238352Abstract: An active target has a target face that is backlit by LEDs, where a detection layer behind the target face detects a new projectile hole in the target, such as from a gun or an arrow. The detection layer may be formed of one or more resistive layers, and the detected increase in resistance due to a new projectile hole being created is sensed and correlated to an XY position of the hole. The location of the new hole is transmitted via an RF signal to the shooter's portable device, such as a smartphone, and the shooter sees the location of the hit relative to the target face in real time. The LEDs may be dynamically controlled. The target is disposable and is supported by a support base containing the control electronics and transmitter.Type: ApplicationFiled: January 12, 2016Publication date: August 18, 2016Inventors: Jeffrey Baldridge, Alexander Ray, Bradley Whaley, Darin Wagner, Neil O. Shotton, Richard A. Blanchard, Shelby Jueden, Steven Roach, Larry Todd Biggs, Eric Kahrs
-
Publication number: 20160238201Abstract: On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.Type: ApplicationFiled: January 28, 2016Publication date: August 18, 2016Inventors: Alexander Ray, Richard Blanchard, Shawn Barber, David Moffenbeier
-
Publication number: 20160154170Abstract: Various applications and customizations of a thin flexible LED light sheet are described. Microscopic LED dice are printed on a thin substrate, and the LEDs are sandwiched between two conductor layers to connect the LEDs in parallel. The conductor layer on the light emitting side is transparent. In one embodiment, the light sheet is applied to the bottom surface of a controllable display to serve as a backlight. In another embodiment, the light sheet is applied to the edge of a leaky light guide for backlighting. In another embodiment, a thin light-emitting edge of the light sheet is coupled to the edge of the leaky light guide for backlighting. In another embodiment, the light sheet is affixed to a medical instrument, and light is emitted from a thin light-emitting edge of the light sheet. In one embodiment, the light sheet is optically coupled to an optical fiber.Type: ApplicationFiled: February 3, 2016Publication date: June 2, 2016Inventors: Travis Thompson, Bradley S. Oraw, Alexander Ray, Andrew Dennis, Mark D. Lowenthal, Sarah Behm Thompson, William J. Ray, Richard A. Blanchard, Neil O. Shotton, Tammie Woolgar, Joseph Nathan, Jeffrey Baldridge, David Hardinger
-
Patent number: 9324693Abstract: A method of forming a light sheet includes printing a layer of inorganic LEDs on a first conductive surface of a substrate, depositing a first dielectric layer, and depositing a second conductor layer over the LEDs so that the LEDs are connected in parallel. At least one of the first conductive surface or the second conductor layer is transparent to allow light to escape. A phosphor layer may be formed over the light sheet so that the LED light mixed with the phosphor light creates white light. The flat light sheet is then folded, such as by molding, to form a three-dimensional structure with angled light emitting walls and reflective surfaces to control a directionality of the emitted light and improve the mixing of light. The folds may form rows of angled walls or polygons.Type: GrantFiled: September 9, 2014Date of Patent: April 26, 2016Assignee: Nthdegree Technologies Worldwide Inc.Inventors: Bradley Steven Oraw, Travis Thompson, Alexander Ray
-
Publication number: 20160049733Abstract: An orthogonal mode transducer including: an elongated waveguide conduit for projecting orthogonal polarisation transmissions, the conduit having a proximal emission source end and a distal mouth end having an aperture for signal transmission; and the elongated conduit including a first and a second pairs of diametrically opposed axial ridges, with the first and second pairs being substantially orthogonal to one another, and the first pair of diametrically opposed axial ridges having an asymmetric narrowing of the gap between the ridges towards the proximal emission source relative to the second pair of diametrically opposed axial ridges. The axial ridge increases in circumferential thickness towards the distal end of the conduit. The asymmetric narrowing is provisioned substantially at the proximal emission source end only with the gap between the first pair and the second pair of ridges being substantially the same at the distal mouth end of the conduit.Type: ApplicationFiled: April 4, 2014Publication date: February 18, 2016Applicant: Commonwealth Scientific and Industrial Research OrganisationInventor: Alexander Ray Dunning
-
Publication number: 20150360606Abstract: Various applications and customizations of a thin flexible LED light sheet are described. Microscopic LED dice are printed on a thin substrate, and the LEDs are sandwiched between two conductor layers to connect the LEDs in parallel. The conductor layer on the light emitting side is transparent. In one embodiment, the light sheet backlights all or a portion of a translucent ceiling material of an automobile to cause the backlit portion of the ceiling material to illuminate the automobile's interior with diffused lighting. This greatly reduces glare for the driver. The emitted color of the light sheet may be adjusted to compensate for the color component added by the ceiling material color. Four light sheets may be connected in series to drop approximately 12 volts. The light sheet color may be controllable by using adjustable RGB color components, either with phosphors or different LED colors.Type: ApplicationFiled: June 12, 2014Publication date: December 17, 2015Inventors: Travis Thompson, Bradley S. Oraw, Alexander Ray, Andrew Dennis, Mark D. Lowenthal, Sara Behm, William J. Ray, Richard A. Blanchard, Neil O. Shotton
-
Publication number: 20150204490Abstract: In one embodiment, a flexible light sheet includes a transparent, thin polymer substrate on which is formed a dielectric first light scattering layer containing nano-particles. A transparent conductor layer is formed over the first light scattering layer. An array of microscopic, inorganic vertical LEDs is printed over the transparent conductor layer so that bottom electrodes of the LEDs make electrical contact to the conductor layer. A dielectric second light scattering layer, also containing the nano-particles, is printed over the transparent conductor layer to laterally surround the LEDs. A top conductor layer makes electrical contact to the top LED electrodes to connect the LEDs in parallel. Light from the LEDs is scattered by the nano-particles in the two light scattering layers by Mei scattering. This reduces total internal reflection in both the first light scattering layer and the transparent conductor layer to increase light extraction.Type: ApplicationFiled: April 23, 2014Publication date: July 23, 2015Applicant: Nthdegree Technologies Worldwide Inc.Inventors: Lixin Zheng, Alexander Ray, Jeffrey Baldridge
-
Publication number: 20150069431Abstract: A method of forming a light sheet includes printing a layer of inorganic LEDs on a first conductive surface of a substrate, depositing a first dielectric layer, and depositing a second conductor layer over the LEDs so that the LEDs are connected in parallel. At least one of the first conductive surface or the second conductor layer is transparent to allow light to escape. A phosphor layer may be formed over the light sheet so that the LED light mixed with the phosphor light creates white light. The flat light sheet is then folded, such as by molding, to form a three-dimensional structure with angled light emitting walls and reflective surfaces to control a directionality of the emitted light and improve the mixing of light. The folds may form rows of angled walls or polygons.Type: ApplicationFiled: September 9, 2014Publication date: March 12, 2015Inventors: Bradley Steven Oraw, Travis Thompson, Alexander Ray
-
Publication number: 20140285995Abstract: LED dies are suspended in an ink and printed on a first support substrate to form a light emitting layer having a light emitting surface emitting primary light, such as blue light. A mixture of a transparent binder, phosphor powder, and transparent glass beads is formed as an ink and printed over the light emitting surface. The mixture forms a wavelength conversion layer when cured. The beads are preferably sized so that the tops of the beads protrude completely through the conversion layer. Some of the primary light passes through the beads with virtually no attenuation or backscattering, and some of the primary light is converted by the phosphor to secondary light. The combination of the secondary light and the primary light passing though the beads may form white light. The overall color is highly controllable by controlling the percentage weight of the beads.Type: ApplicationFiled: June 3, 2014Publication date: September 25, 2014Inventors: William J. Ray, Reuben Rettke, Mark D. Lowenthal, Alexander Ray