Patents by Inventor Alexander Rosenberg Johansen

Alexander Rosenberg Johansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11354565
    Abstract: The technology disclosed proposes using a combination of computationally cheap, less-accurate bag of words (BoW) model and computationally expensive, more-accurate long short-term memory (LSTM) model to perform natural processing tasks such as sentiment analysis. The use of cheap, less-accurate BoW model is referred to herein as “skimming”. The use of expensive, more-accurate LSTM model is referred to herein as “reading”. The technology disclosed presents a probability-based guider (PBG). PBG combines the use of BoW model and the LSTM model. PBG uses a probability thresholding strategy to determine, based on the results of the BoW model, whether to invoke the LSTM model for reliably classifying a sentence as positive or negative. The technology disclosed also presents a deep neural network-based decision network (DDN) that is trained to learn the relationship between the BoW model and the LSTM model and to invoke only one of the two models.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: June 7, 2022
    Assignee: salesforce.com, inc.
    Inventors: Alexander Rosenberg Johansen, Bryan McCann, James Bradbury, Richard Socher
  • Publication number: 20220164635
    Abstract: The technology disclosed proposes using a combination of computationally cheap, less-accurate bag of words (BoW) model and computationally expensive, more-accurate long short-term memory (LSTM) model to perform natural processing tasks such as sentiment analysis. The use of cheap, less-accurate BoW model is referred to herein as “skimming”. The use of expensive, more-accurate LSTM model is referred to herein as “reading”. The technology disclosed presents a probability-based guider (PBG). PBG combines the use of BoW model and the LSTM model. PBG uses a probability thresholding strategy to determine, based on the results of the BoW model, whether to invoke the LSTM model for reliably classifying a sentence as positive or negative. The technology disclosed also presents a deep neural network-based decision network (DDN) that is trained to learn the relationship between the BoW model and the LSTM model and to invoke only one of the two models.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Inventors: Alexander Rosenberg Johansen, Bryan McCann, James Bradbury, Richard Socher
  • Patent number: 11250311
    Abstract: The technology disclosed proposes using a combination of computationally cheap, less-accurate bag of words (BoW) model and computationally expensive, more-accurate long short-term memory (LSTM) model to perform natural processing tasks such as sentiment analysis. The use of cheap, less-accurate BoW model is referred to herein as “skimming”. The use of expensive, more-accurate LSTM model is referred to herein as “reading”. The technology disclosed presents a probability-based guider (PBG). PBG combines the use of BoW model and the LSTM model. PBG uses a probability thresholding strategy to determine, based on the results of the BoW model, whether to invoke the LSTM model for reliably classifying a sentence as positive or negative. The technology disclosed also presents a deep neural network-based decision network (DDN) that is trained to learn the relationship between the BoW model and the LSTM model and to invoke only one of the two models.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: February 15, 2022
    Assignee: salesforce.com, inc.
    Inventors: Alexander Rosenberg Johansen, Bryan McCann, James Bradbury, Richard Socher
  • Publication number: 20180268287
    Abstract: The technology disclosed proposes using a combination of computationally cheap, less-accurate bag of words (BoW) model and computationally expensive, more-accurate long short-term memory (LSTM) model to perform natural processing tasks such as sentiment analysis. The use of cheap, less-accurate BoW model is referred to herein as “skimming”. The use of expensive, more-accurate LSTM model is referred to herein as “reading”. The technology disclosed presents a probability-based guider (PBG). PBG combines the use of BoW model and the LSTM model. PBG uses a probability thresholding strategy to determine, based on the results of the BoW model, whether to invoke the LSTM model for reliably classifying a sentence as positive or negative. The technology disclosed also presents a deep neural network-based decision network (DDN) that is trained to learn the relationship between the BoW model and the LSTM model and to invoke only one of the two models.
    Type: Application
    Filed: December 22, 2017
    Publication date: September 20, 2018
    Applicant: salesforce.com, inc.
    Inventors: Alexander Rosenberg Johansen, Bryan McCann, James Bradbury, Richard Socher
  • Publication number: 20180268298
    Abstract: The technology disclosed proposes using a combination of computationally cheap, less-accurate bag of words (BoW) model and computationally expensive, more-accurate long short-term memory (LSTM) model to perform natural processing tasks such as sentiment analysis. The use of cheap, less-accurate BoW model is referred to herein as “skimming”. The use of expensive, more-accurate LSTM model is referred to herein as “reading”. The technology disclosed presents a probability-based guider (PBG). PBG combines the use of BoW model and the LSTM model. PBG uses a probability thresholding strategy to determine, based on the results of the BoW model, whether to invoke the LSTM model for reliably classifying a sentence as positive or negative. The technology disclosed also presents a deep neural network-based decision network (DDN) that is trained to learn the relationship between the BoW model and the LSTM model and to invoke only one of the two models.
    Type: Application
    Filed: December 22, 2017
    Publication date: September 20, 2018
    Applicant: salesforce.com, inc.
    Inventors: Alexander Rosenberg Johansen, Bryan McCann, James Bradbury, Richard Socher