Patents by Inventor Alexander S. Perel

Alexander S. Perel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810746
    Abstract: An ion source having an extraction plate with a variable thickness is disclosed. The extraction plate has a protrusion on its interior or exterior surface proximate the extraction aperture. The protrusion increases the thickness of the extraction aperture in certain regions. This increases the loss area in those regions, which serves as a sink for ions and electrons. In this way, the plasma density is decreased more significantly in the regions where the extraction aperture has a greater thickness. The shape of the protrusion may be modified to achieve the desired plasma uniformity. Thus, it may be possible to create an extracted ion beam having a more uniform ion density. In some tests, the uniformity of the beam current along the width direction was improved by between 20% and 50%.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Alexander S. Perel, Jay T. Scheuer, Bon-Woong Koo, Robert C. Lindberg, Peter F. Kurunczi, Graham Wright
  • Publication number: 20230080083
    Abstract: An ion source having an extraction plate with a variable thickness is disclosed. The extraction plate has a protrusion on its interior or exterior surface proximate the extraction aperture. The protrusion increases the thickness of the extraction aperture in certain regions. This increases the loss area in those regions, which serves as a sink for ions and electrons. In this way, the plasma density is decreased more significantly in the regions where the extraction aperture has a greater thickness. The shape of the protrusion may be modified to achieve the desired plasma uniformity. Thus, it may be possible to create an extracted ion beam having a more uniform ion density. In some tests, the uniformity of the beam current along the width direction was improved by between 20% and 50%.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Inventors: Alexandre Likhanskii, Alexander S. Perel, Jay T. Scheuer, Bon-Woong Koo, Robert C. Lindberg, Peter F. Kurunczi, Graham Wright
  • Patent number: 11251010
    Abstract: A system for extending the life of a repeller in an IHC ion source is disclosed. The system includes an IHC ion source wherein the back surface of the repeller has been shaped to reduce the possibility of electrical shorts. The separation distance between the back surface of the repeller and the chamber wall behind the repeller is increased along its outer edge, as compared to the separation distance near the center of the repeller. This separation distance reduces the possibility that deposited material will flake and short the repeller to the chamber wall. Further, in certain embodiments, the separation distance between the back surface of the repeller and the chamber wall near the center of the repeller is unchanged, so as to minimize the flow of gas that exits from the chamber. The back surface of the repeller may be tapered, stepped or arced to achieve these criteria.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: February 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Alexander S. Perel, Jay S. Johnson, Suren Madunts, Adam M. McLaughlin, Graham Wright
  • Patent number: 10896799
    Abstract: An IHC ion source with multiple configurations is disclosed. For example, an IHC ion source comprises a chamber, having at least one electrically conductive wall, and a cathode and a repeller disposed on opposite ends of the chamber. Electrodes are disposed on one or more walls of the ion source. Bias voltages are applied to at least one of the cathode, repeller and the electrodes, relative to the electrically conductive wall of the chamber. Further, the IHC ion source comprises a configuration circuit, which receives the various voltages as input voltages, and provides selected output voltages to the cathode, repeller and electrodes, based on user input. In this way, the IHC ion source can be readily reconfigured for different applications without rewiring the power supplies, as is currently done. This configuration circuit may be utilized with other types of ion sources as well.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: January 19, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Klaus Becker, Carlos M. Goulart, Daniel Alvarado, Daniel R. Tieger, Alexander S. Perel
  • Patent number: 10818469
    Abstract: An indirectly heated cathode ion source having a cylindrical housing with two open ends is disclosed. The cathode and repeller are sized to fit within the two open ends. These components may be inserted into the open ends, creating a small radial spacing that provides electrical isolation between the cylindrical housing and the cathode and repeller. In another embodiment, the repeller may be disposed from the end of the cylindrical housing creating a small axial spacing. In another embodiment, insulators are used to hold the cathode and repeller in place. This design results in a reduced distance between the cathode column and the extraction aperture, which may be beneficial to the generation of ion beams of certain species.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 27, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alexander S. Perel, Jay T. Scheuer, Graham Wright
  • Publication number: 20200194220
    Abstract: An indirectly heated cathode ion source having a cylindrical housing with two open ends is disclosed. The cathode and repeller are sized to fit within the two open ends. These components may be inserted into the open ends, creating a small radial spacing that provides electrical isolation between the cylindrical housing and the cathode and repeller. In another embodiment, the repeller may be disposed from the end of the cylindrical housing creating a small axial spacing. In another embodiment, insulators are used to hold the cathode and repeller in place. This design results in a reduced distance between the cathode column and the extraction aperture, which may be beneficial to the generation of ion beams of certain species.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Alexander S. Perel, Jay T. Scheuer, Graham Wright
  • Patent number: 10347457
    Abstract: A system and method for varying the temperature of a faceplate for an ion source is disclosed. The faceplate is held against the chamber walls of the ion source by a plurality of fasteners. These fasteners may include tension springs or compression springs. By changing the length of the tension spring or compression spring when under load, the spring force of the spring can be increased. This increased spring force increases the compressive force between the faceplate and the chamber walls, creating improved thermal conductivity. In certain embodiments, the length of the spring is regulated by an electronic length adjuster. This electronic length adjuster is in communication with a controller that outputs an electrical signal indicative of the desired length of the spring. Various mechanisms for adjusting the length of the spring are disclosed.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 9, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexander S. Perel, Sr., David P. Sporleder, Adam M. McLaughlin, Craig R. Chaney, Neil J. Bassom
  • Publication number: 20190189387
    Abstract: A system and method for varying the temperature of a faceplate for an ion source is disclosed. The faceplate is held against the chamber walls of the ion source by a plurality of fasteners. These fasteners may include tension springs or compression springs. By changing the length of the tension spring or compression spring when under load, the spring force of the spring can be increased. This increased spring force increases the compressive force between the faceplate and the chamber walls, creating improved thermal conductivity. In certain embodiments, the length of the spring is regulated by an electronic length adjuster. This electronic length adjuster is in communication with a controller that outputs an electrical signal indicative of the desired length of the spring. Various mechanisms for adjusting the length of the spring are disclosed.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Inventors: Alexander S. Perel, David P. Sporleder, Adam M. McLaughlin, Craig R. Chaney, Neil J. Bassom
  • Patent number: 10290461
    Abstract: An ion source having improved life is disclosed. In certain embodiments, the ion source is an IHC ion source comprising a chamber, having a plurality of electrically conductive walls, having a cathode which is electrically connected to the walls of the ion source. Electrodes are disposed on one or more walls of the ion source. A bias voltage is applied to at least one of the electrodes, relative to the walls of the chamber. In certain embodiments, fewer positive ions are attracted to the cathode, reducing the amount of sputtering experienced by the cathode. Advantageously, the life of the cathode is improved using this technique. In another embodiment, the ion source comprises a Bernas ion source comprising a chamber having a filament with one lead of the filament connected to the walls of the ion source.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Daniel R. Tieger, Klaus Becker, Daniel Alvarado, Alexander S. Perel
  • Publication number: 20190122851
    Abstract: An ion source having improved life is disclosed. In certain embodiments, the ion source is an IHC ion source comprising a chamber, having a plurality of electrically conductive walls, having a cathode which is electrically connected to the walls of the ion source. Electrodes are disposed on one or more walls of the ion source. A bias voltage is applied to at least one of the electrodes, relative to the walls of the chamber. In certain embodiments, fewer positive ions are attracted to the cathode, reducing the amount of sputtering experienced by the cathode. Advantageously, the life of the cathode is improved using this technique. In another embodiment, the ion source comprises a Bernas ion source comprising a chamber having a filament with one lead of the filament connected to the walls of the ion source.
    Type: Application
    Filed: May 23, 2017
    Publication date: April 25, 2019
    Inventors: Daniel R. Tieger, Klaus Becker, Daniel Alvarado, Alexander S. Perel
  • Patent number: 9824846
    Abstract: The IHC ion source comprises an ion source chamber having a cathode and a repeller on opposite ends. The repeller is made of two discrete parts, each comprising a different material. The repeller includes a repeller head, which may be a disc shaped component, and a stem to support the head. The repeller head is made from a conductive material having a higher thermal conductivity than the stem. In this way, the temperature of the repeller head is maintained at a higher temperature than would otherwise be possible. The higher temperature limits the build-up of material on the repeller head, which improves the performance of the IHC ion source. In certain embodiments, the repeller head and the stem are connected using a press fit. Differences in the coefficient of thermal expansion of the repeller head and the stem may cause the press fit to become tighter at higher temperatures.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: November 21, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: William Davis Lee, Alexander S. Perel, David P. Sporleder
  • Publication number: 20170213684
    Abstract: The IHC ion source comprises an ion source chamber having a cathode and a repeller on opposite ends. The repeller is made of two discrete parts, each comprising a different material. The repeller includes a repeller head, which may be a disc shaped component, and a stem to support the head. The repeller head is made from a conductive material having a higher thermal conductivity than the stem. In this way, the temperature of the repeller head is maintained at a higher temperature than would otherwise be possible. The higher temperature limits the build-up of material on the repeller head, which improves the performance of the IHC ion source. In certain embodiments, the repeller head and the stem are connected using a press fit. Differences in the coefficient of thermal expansion of the repeller head and the stem may cause the press fit to become tighter at higher temperatures.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 27, 2017
    Inventors: William Davis Lee, Alexander S. Perel, David P. Sporleder
  • Patent number: 9142379
    Abstract: An ion source and method of cleaning are disclosed. One or more heating units are placed in close proximity to the inner volume of the ion source, so as to affect the temperature within the ion source. In one embodiment, one or more walls of the ion source have recesses into which heating units are inserted. In another embodiment, one or more walls of the ion source are constructed of a conducting circuit and an insulating layer. By utilizing heating units near the ion source, it is possible to develop new methods of cleaning the ion source. Cleaning gas is flowed into the ion source, where it is ionized, either by the cathode, as in normal operating mode, or by the heat generated by the heating units. The cleaning gas is able to remove residue from the walls of the ion source more effectively due to the elevated temperature.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: September 22, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher R. Campbell, Craig R. Chaney, Robert C. Lindberg, Wilhelm P. Platow, Alexander S. Perel
  • Patent number: 8937003
    Abstract: A technique for ion implanting a target is disclosed. In accordance with one exemplary embodiment, the technique may be realized as a method for ion implanting a target, the method comprising: providing a predetermined amount of processing gas in an arc chamber of an ion source, the processing gas containing implant species and implant species carrier, where the implant species carrier may be one of O and H; providing a predetermined amount of dilutant into the arc chamber, wherein the dilutant may comprise a noble species containing material; and ionizing the processing gas and the dilutant.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 20, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexander S. Perel, Craig R. Chaney, Wayne D. LeBlanc, Robert Lindberg, Antonella Cucchetti, Neil J. Bassom, David Sporleder, James Young
  • Publication number: 20140319369
    Abstract: An ion source and method of cleaning are disclosed. One or more heating units are placed in close proximity to the inner volume of the ion source, so as to affect the temperature within the ion source. In one embodiment, one or more walls of the ion source have recesses into which heating units are inserted. In another embodiment, one or more walls of the ion source are constructed of a conducting circuit and an insulating layer. By utilizing heating units near the ion source, it is possible to develop new methods of cleaning the ion source. Cleaning gas is flowed into the ion source, where it is ionized, either by the cathode, as in normal operating mode, or by the heat generated by the heating units. The cleaning gas is able to remove residue from the walls of the ion source more effectively due to the elevated temperature.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Bon-Woong Koo, Christopher R. Campbell, Craig R. Chaney, Robert C. Lindberg, Wilhelm P. Platow, Alexander S. Perel
  • Patent number: 8809800
    Abstract: An ion source and method of cleaning are disclosed. One or more heating units are placed in close proximity to the inner volume of the ion source, so as to affect the temperature within the ion source. In one embodiment, one or more walls of the ion source have recesses into which heating units are inserted. In another embodiment, one or more walls of the ion source are constructed of a conducting circuit and an insulating layer. By utilizing heating units near the ion source, it is possible to develop new methods of cleaning the ion source. Cleaning gas is flowed into the ion source, where it is ionized, either by the cathode, as in normal operating mode, or by the heat generated by the heating units. The cleaning gas is able to remove residue from the walls of the ion source more effectively due to the elevated temperature.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: August 19, 2014
    Assignee: Varian Semicoductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher R. Campbell, Craig R. Chaney, Robert Lindberg, Wilhelm P. Platow, Alexander S. Perel
  • Patent number: 8455839
    Abstract: An ion source includes an arc chamber housing defining an arc chamber having an extraction aperture, and a wiper. The wiper is positioned within the arc chamber in a parked position and configured to be driven from the parked position to operational positions to clean the extraction aperture. A cleaning sub-assembly for an ion source includes a wiper configured to be positioned within an arc chamber of the ion source when in a parked position and driven from the parked position to operational positions to clean an extraction aperture of the ion source.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 4, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Craig R. Chaney, Alexander S. Perel, Neil J. Bassom, Leo V. Klos
  • Publication number: 20130072008
    Abstract: A technique for ion implanting a target is disclosed. In accordance with one exemplary embodiment, the technique may be realized as a method for ion implanting a target, the method comprising: providing a predetermined amount of processing gas in an arc chamber of an ion source, the processing gas containing implant species and implant species carrier, where the implant species carrier may be one of O and H; providing a predetermined amount of dilutant into the arc chamber, wherein the dilutant may comprise a noble species containing material; and ionizing the processing gas and the dilutant.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Inventors: Alexander S. Perel, Craig R. Chaney, Wayne D. LeBlanc, Robert Lindberg, Antonella Cucchetti, Neil J. Bassom, David Sporleder, James Young
  • Patent number: 8330127
    Abstract: Liner elements to protect the ion source housing and also increase the power efficiency of the ion source are disclosed. Two liner elements, preferably constructed from tungsten, are inserted into the ion source chamber, one placed against each of the two sidewalls. These inserts are electrically biased so as to induce an electrical field that is perpendicular to the applied magnetic field. Such an arrangement has been unexpectedly found to increase the life of not only the ion chamber housing, but also the indirectly heated cathode (IHC) and the repeller. In addition, the use of these biased liner elements also improved the power efficiency of the ion source; allowing more ions to be generated at a given power level, or an equal number of ions to be generated at a lower power level.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Jay T. Scheuer, Alexander S. Perel, Craig R. Chaney, Neil J. Bassom
  • Patent number: 8263944
    Abstract: In an ion implanter, an inert gas is directed at a cathode assembly near an ion source chamber via a supply tube. The inert gas is provided with a localized directional flow toward the cathode assembly to reduce unwanted concentrations of cleaning or dopant gases introduced into the ion source chamber, thereby reducing the effects of unwanted filament growth in the cathode assembly and extending the manufacturing life of the ion source.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John Bon-Woong Koo, David J. Twiss, Chris Campbell, Frank Sinclair, Alexander S. Perel, Craig R. Chaney, Wilhelm P. Platow, Eric R. Cobb