Patents by Inventor Alexander S. Zibrov

Alexander S. Zibrov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230326623
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 12, 2023
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 11710579
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: July 25, 2023
    Assignees: President and Fellows of Harvard College, California Institute of Technology, Massachusetts Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20220293293
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 11380455
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 5, 2022
    Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, California Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20200185120
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: July 13, 2018
    Publication date: June 11, 2020
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 10197497
    Abstract: A method of making measurements includes providing a sensor with at least one solid state electronic spin; irradiating the sensor with radiation from an electromagnetic radiation source that manipulates the solid state electronic spins to produce spin-dependent fluorescence, wherein the spin-dependent fluorescence decays as a function of relaxation time; providing a target material in the proximity of the sensor, wherein, thermally induced currents (Johnson noise) present in the target material alters the fluorescence decay of the solid state electronic spins as a function of relaxation time; and determining a difference in the solid state spins spin-dependent fluorescence decay in the presence and absence of the target material and correlating the difference with a property of the sensor and/or target material.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 5, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Shimon Jacob Kolkowitz, Arthur Safira, Alexander A. High, Robert C. Devlin, Soonwon Choi, Quirin P. Unterreithmeier, David Patterson, Alexander S. Zibrov, Vladimir E. Manucharyan, Mikhail D. Lukin, Hongkun Park
  • Publication number: 20180275057
    Abstract: A method of making measurements includes providing a sensor with at least one solid state electronic spin; irradiating the sensor with radiation from an electromagnetic radiation source that manipulates the solid state electronic spins to produce spin-dependent fluorescence, wherein the spin-dependent fluorescence decays as a function of relaxation time; providing a target material in the proximity of the sensor, wherein, thermally induced currents (Johnson noise) present in the target material alters the fluorescence decay of the solid state electronic spins as a function of relaxation time; and determining a difference in the solid state spins spin-dependent fluorescence decay in the presence and absence of the target material and correlating the difference with a property of the sensor and/or target material.
    Type: Application
    Filed: January 29, 2016
    Publication date: September 27, 2018
    Inventors: Shimon Jacob KOLKOWITZ, Arthur SAFIRA, Alexander A. HIGH, Robert C. DEVLIN, Soonwon CHOI, Quirin P. UNTERREITHMEIER, David PATTERSON, Alexander S. ZIBROV, Vladimir E. MANUCHARYAN, Mikhail D. LUKIN, Hongkun PARK
  • Publication number: 20100258784
    Abstract: A cavity free, broadband approach for engineering photon emitter interactions via sub-wavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot (QD) is optically excited in close proximity to a silver nanowire (NW), emission from the QD couples directly to guided surface plasmons in the NW, causing the wire's ends to light up. Nonclassical photon correlations between the emission from the QD and the ends of the NW demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that the efficient coupling is accompanied by more than 2.5-fold enhancement of the QD spontaneous emission, in a good agreement with theoretical predictions.
    Type: Application
    Filed: September 18, 2008
    Publication date: October 14, 2010
    Inventors: Mikhail D. Lukin, Alexander S. Zibrov, Alexey V. Akimov, Philip R. Hemmer, Hongkun Park, Aryesh Mukherjee, Darrick E. Chang, Chun Liang Yu