Patents by Inventor Alexander SCHOSSMANN

Alexander SCHOSSMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12000718
    Abstract: A rotation sensor system includes a rotatable target object configured to rotate about a rotational axis in a rotation direction; a first millimeter-wave (mm-wave) metamaterial track coupled to the rotatable target object, where the first mm-wave metamaterial track is arranged around the rotational axis, and where the first mm-wave metamaterial track includes a first array of elementary structures having at least one first characteristic that changes around a perimeter of the first mm-wave metamaterial track; at least one transmitter configured to transmit a first electro-magnetic transmit signal towards the first mm-wave metamaterial track, where the first mm-wave metamaterial track converts the first electro-magnetic transmit signal into a first electro-magnetic receive signal; at least one receiver configured to receive the first electro-magnetic receive signal; and at least one processor configured to determine a rotational parameter of the rotatable target object based on the received first electro-magne
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: June 4, 2024
    Assignee: Infineon Technologies AG
    Inventors: Alexander Schossmann, Alexander Bergmann, Dirk Hammerschmidt, Christof Michenthaler
  • Publication number: 20240167815
    Abstract: A sensor system includes a first flexible substrate configured to undergo a deformation in response to a force applied to the first flexible substrate or an environmental condition to which the first flexible substrate is exposed; a first metamaterial layer mechanically coupled to the first flexible substrate, wherein the first metamaterial layer comprises a first array of conductive elements that are mutually coupled by a first strain-dependent coupling that changes based on the deformation of the first flexible substrate; at least one transmitter configured to transmit a first electromagnetic transmit wave towards the first metamaterial layer, wherein the first metamaterial layer is configured to convert the first electromagnetic transmit wave into a first electromagnetic receive wave based on the first strain-dependent coupling; and at least one receiver configured to receive the first electromagnetic receive wave and acquire a first measurement of a first property of the first electromagnetic receive wave
    Type: Application
    Filed: September 12, 2023
    Publication date: May 23, 2024
    Inventors: Alexander SCHOSSMANN, Alexander BERGMANN, Dirk HAMMERSCHMIDT, Christof MICHENTHALER
  • Publication number: 20230400372
    Abstract: A sensor system includes a first metamaterial track mechanically coupled to a rotational shaft configured to rotate about a rotational axis, wherein the first metamaterial track is arranged at least partially around the rotational axis, and wherein the first metamaterial track includes a first array of elementary structures; at least one transmitter configured to transmit a first continuous wave towards the first metamaterial track, wherein the first metamaterial track is configured to convert the first continuous wave into a first receive signal based on a rotational parameter of the rotational shaft; and at least one quadrature continuous-wave receiver configured to receive the first receive signal, acquire a first measurement of a first property of the first receive signal, and determine a measurement value for the rotational parameter of the rotational shaft based on the first measurement.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 14, 2023
    Inventors: Alexander SCHOSSMANN, Alexander BERGMANN, Dirk HAMMERSCHMIDT, Christof MICHENTHALER
  • Patent number: 11788910
    Abstract: A sensor system includes a first metamaterial track mechanically coupled to a rotational shaft configured to rotate about a rotational axis, wherein the first metamaterial track is arranged at least partially around the rotational axis, and wherein the first metamaterial track includes a first array of elementary structures; at least one transmitter configured to transmit a first continuous wave towards the first metamaterial track, wherein the first metamaterial track is configured to convert the first continuous wave into a first receive signal based on a rotational parameter of the rotational shaft; and at least one quadrature continuous-wave receiver configured to receive the first receive signal, acquire a first measurement of a first property of the first receive signal, and determine a measurement value for the rotational parameter of the rotational shaft based on the first measurement.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: October 17, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Schossmann, Alexander Bergmann, Dirk Hammerschmidt, Christof Michenthaler
  • Patent number: 11698311
    Abstract: A torque measurement system includes an outer rotational shaft and an inner rotational shaft both configured to rotate about a rotational axis. A rotation of the inner rotational shaft causes a rotation of the outer rotational shaft via a coupling structure. At least one torque applied to the inner rotational shaft is translated into a first torque-dependent angular shift between the shafts. A first metamaterial track is coupled to the outer rotational shaft and configured to co-rotate with the outer rotational shaft. A second metamaterial track is coupled to the inner rotational shaft and configured to co-rotate with the inner rotational shaft. The tracks are configured to convert an electro-magnetic transmit signal into a first electro-magnetic receive signal based on the first torque-dependent angular shift and a receiver is configured to receive the electro-magnetic receive signal and measure the at least one torque based on the electro-magnetic receive signal.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: July 11, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Schossmann, Alexander Bergmann, Franz Michael Darrer, Dirk Hammerschmidt, Christof Michenthaler
  • Publication number: 20230140391
    Abstract: A sensor system includes a first metamaterial track mechanically coupled to a rotational shaft configured to rotate about a rotational axis, wherein the first metamaterial track is arranged at least partially around the rotational axis, and wherein the first metamaterial track includes a first array of elementary structures; at least one transmitter configured to transmit a first continuous wave towards the first metamaterial track, wherein the first metamaterial track is configured to convert the first continuous wave into a first receive signal based on a rotational parameter of the rotational shaft; and at least one quadrature continuous-wave receiver configured to receive the first receive signal, acquire a first measurement of a first property of the first receive signal, and determine a measurement value for the rotational parameter of the rotational shaft based on the first measurement.
    Type: Application
    Filed: November 4, 2021
    Publication date: May 4, 2023
    Applicant: Infineon Technologies AG
    Inventors: Alexander SCHOSSMANN, Alexander BERGMANN, Dirk HAMMERSCHMIDT, Christof MICHENTHALER
  • Publication number: 20230131760
    Abstract: A torque measurement system includes an outer rotational shaft and an inner rotational shaft both configured to rotate about a rotational axis. A rotation of the inner rotational shaft causes a rotation of the outer rotational shaft via a coupling structure. At least one torque applied to the inner rotational shaft is translated into a first torque-dependent angular shift between the shafts. A first metamaterial track is coupled to the outer rotational shaft and configured to co-rotate with the outer rotational shaft. A second metamaterial track is coupled to the inner rotational shaft and configured to co-rotate with the inner rotational shaft. The tracks are configured to convert an electro-magnetic transmit signal into a first electro-magnetic receive signal based on the first torque-dependent angular shift and a receiver is configured to receive the electro-magnetic receive signal and measure the at least one torque based on the electro-magnetic receive signal.
    Type: Application
    Filed: October 25, 2021
    Publication date: April 27, 2023
    Applicant: Infineon Technologies AG
    Inventors: Alexander SCHOSSMANN, Alexander BERGMANN, Franz Michael DARRER, Dirk HAMMERSCHMIDT, Christof MICHENTHALER
  • Publication number: 20220412779
    Abstract: A rotation sensor system includes a rotatable target object configured to rotate about a rotational axis in a rotation direction; a first millimeter-wave (mm-wave) metamaterial track coupled to the rotatable target object, where the first mm-wave metamaterial track is arranged around the rotational axis, and where the first mm-wave metamaterial track includes a first array of elementary structures having at least one first characteristic that changes around a perimeter of the first mm-wave metamaterial track; at least one transmitter configured to transmit a first electro-magnetic transmit signal towards the first mm-wave metamaterial track, where the first mm-wave metamaterial track converts the first electro-magnetic transmit signal into a first electro-magnetic receive signal; at least one receiver configured to receive the first electro-magnetic receive signal; and at least one processor configured to determine a rotational parameter of the rotatable target object based on the received first electro-magne
    Type: Application
    Filed: June 28, 2021
    Publication date: December 29, 2022
    Applicant: Infineon Technologies AG
    Inventors: Alexander SCHOSSMANN, Alexander BERGMANN, Dirk HAMMERSCHMIDT, Christof MICHENTHALER