Patents by Inventor Alexander Sergienko

Alexander Sergienko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230008305
    Abstract: A system and method for production of ammonia are presented. The system includes a reactor adapted to receive therein through a first input of the reactor sulfate ammonia and a reacting agent through a second input of the reactor, wherein the reactor is heated to a temperature not to exceed a predetermined temperature to create a chemical reaction between a sulfate ammonia and the reacting agent; and a purifier adapted to accept ammonia from the reactor and perform a purification process to purify the ammonia to a predetermined degree of purification.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 12, 2023
    Applicants: SAGEL, T -Tie Ltd.
    Inventors: Alexander SERGIENKO, Michael Yehuda ENDE
  • Patent number: 8829415
    Abstract: A correlation confocal microscope uses correlated photon pairs to improve resolution. It employs a source of a light beam converging to a point location on a sample, and an objective that gathers light from the point location and generates an image beam. A modulator applies a spatial pattern of modulation to the source light beam to define spatially correlated photons whose spatial correlations are preserved in modulated light gathered from the sample. A filter applies a modulation-selective filter function to the image light beam to generate a filtered light beam of like-modulated photons. A coincidence detector detects temporally coincident photon pairs in the filtered light beam, generating a pulse output that indicates the magnitude of a light-detectable property (such as transmissivity or reflectivity) of the sample at the point location. The modulator may apply phase modulation and the filter may be a phase-sensitive component such as an interferometer.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Trustees of Boston University
    Inventors: David Simon, Alexander Sergienko, Lee Edwin Goldstein, Robert H. Webb
  • Publication number: 20140008525
    Abstract: A correlation confocal microscope uses correlated photon pairs to improve resolution. It employs a source of a light beam converging to a point location on a sample, and an objective that gathers light from the point location and generates an image beam. A modulator applies a spatial pattern of modulation to the source light beam to define spatially correlated photons whose spatial correlations are preserved in modulated light gathered from the sample. A filter applies a modulation-selective filter function to the image light beam to generate a filtered light beam of like-modulated photons. A coincidence detector detects temporally coincident photon pairs in the filtered light beam, generating a pulse output that indicates the magnitude of a light-detectable property (such as transmissivity or reflectivity) of the sample at the point location. The modulator may apply phase modulation and the filter may be a phase-sensitive component such as an interferometer.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 9, 2014
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: David Simon, Alexander Sergienko, Lee Edwin Goldstein, Robert H. Webb
  • Patent number: 6646727
    Abstract: The invention relates to an entangled-photon apparatus capable of measuring particular characteristics of an optical element, device or channel. Specifically, the apparatus and a method of using said apparatus to measure polarization mode dispersion in an optical communications fiber is disclosed. The apparatus includes a source of entangled photons, which are injected into the device under test, and a quantum interference device for determining the state of entanglement of said photons after they pass through the device. The quantum interference device includes a variable, polarization-specific delay element that is incremented to null out polarization mode dispersion in the device under test, and a wavelength demultiplexer/array detector that permits simultaneous measurements across a wide wavelength band. A second preferred embodiment of the invention and method is suitable for characterizing PMD in-situ that is, PMD measurements can be made while an optical fiber is in use for optical communications.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: November 11, 2003
    Inventors: Bahaa E. A. Saleh, Malvin C. Teich, Alexander Sergienko, Steven J. Bielagus, Milan J. Merhar
  • Publication number: 20020191176
    Abstract: The invention relates to an entangled-photon apparatus capable of measuring particular characteristics of an optical element, device or channel. Specifically, the apparatus and a method of using said apparatus to measure polarization mode dispersion in an optical communications fiber is disclosed. The apparatus includes a source of entangled photons, which are injected into the device under test, and a quantum interference device for determining the state of entanglement of said photons after they pass through the device. The quantum interference device includes a variable, polarization-specific delay element that is incremented to null out polarization mode dispersion in the device under test, and a wavelength demultiplexer/array detector that permits simultaneous measurements across a wide wavelength band.
    Type: Application
    Filed: May 16, 2002
    Publication date: December 19, 2002
    Applicant: Twin Photon, Inc.
    Inventors: Bahaa E.A. Saleh, Malvin C. Teich, Alexander Sergienko, Steven J. Bielagus, Milan J. Merhar