Patents by Inventor Alexander Shand

Alexander Shand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960029
    Abstract: Example embodiments relate to selective deactivation of light emitters for interference mitigation in light detection and ranging (lidar) devices. An example method includes deactivating one or more light emitters within a lidar device during a firing cycle. The method also includes identifying whether interference is influencing measurements made by the lidar device. Identifying whether interference is influencing measurements made by the lidar device includes determining, for each light detector of the lidar device that is associated with the one or more light emitters deactivated during the firing cycle, whether a light signal was detected during the firing cycle.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: April 16, 2024
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20240094727
    Abstract: An example method involves detecting a sensor-testing trigger. Detecting the sensor-testing trigger may comprise determining that a vehicle is within a threshold distance to a target in an environment of the vehicle. The method also involves obtaining sensor data collected by a sensor of the vehicle after the detection of the sensor-testing trigger. The sensor data is indicative of a scan of a region of the environment that includes the target. The method also involves comparing the sensor data with previously-collected sensor data indicating detection of the target by one or more sensors during one or more previous scans of the environment. The method also involves generating performance metrics related to the sensor of the vehicle based on the comparison.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Inventors: Stephanie McArthur, Mark Alexander Shand, Colin Braley
  • Patent number: 11927697
    Abstract: A computing system may operate a LIDAR device to emit and detect light pulses in accordance with a time sequence including standard detection period(s) that establish a nominal detection range for the LIDAR device and extended detection period(s) having durations longer than those of the standard detection period(s). The system may then make a determination that the LIDAR detected return light pulse(s) during extended detection period(s) that correspond to particular emitted light pulse(s). Responsively, the computing system may determine that the detected return light pulse(s) have detection times relative to corresponding emission times of particular emitted light pulse(s) that are indicative of one or more ranges. Given this, the computing system may make a further determination of whether or not the one or more ranges indicate that an object is positioned outside of the nominal detection range, and may then engage in object detection in accordance with the further determination.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: March 12, 2024
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20240061089
    Abstract: The present disclosure relates to systems and methods that facilitate light detection and ranging operations. An example method includes determining, for at least one light-emitter device of a plurality of light-emitter devices, a light pulse schedule. The plurality of light-emitter devices is operable to emit light along a plurality of emission vectors. The light pulse schedule is based on a respective emission vector of the at least one light-emitter device and a three-dimensional map of an external environment. The light pulse schedule includes at least one light pulse parameter and a listening window duration. The method also includes causing the at least one light-emitter device of the plurality of light-emitter devices to emit a light pulse according to the light pulse schedule. The light pulse interacts with an external environment.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Inventor: Mark Alexander Shand
  • Publication number: 20240045060
    Abstract: A computing system may operate a LIDAR device to emit light pulses in accordance with a time sequence including a time-varying dither. The system may then determine that the LIDAR detected return light pulses during corresponding detection periods for each of two or more emitted light pulses. Responsively, the system may determine that the detected return light pulses have (i) detection times relative to corresponding emission times of a plurality of first emitted light pulses that are indicative of a first set of ranges and (ii) detection times relative to corresponding emission times of a plurality of second emitted light pulses that are indicative of a second set of ranges. Given this, the system may select between using the first set of ranges as a basis for object detection and using the second set of ranges as a basis for object detection, and may then engage in object detection accordingly.
    Type: Application
    Filed: August 21, 2023
    Publication date: February 8, 2024
    Inventor: Mark Alexander Shand
  • Patent number: 11860626
    Abstract: An example method involves detecting a sensor-testing trigger. Detecting the sensor-testing trigger may comprise determining that a vehicle is within a threshold distance to a target in an environment of the vehicle. The method also involves obtaining sensor data collected by a sensor of the vehicle after the detection of the sensor-testing trigger. The sensor data is indicative of a scan of a region of the environment that includes the target. The method also involves comparing the sensor data with previously-collected sensor data indicating detection of the target by one or more sensors during one or more previous scans of the environment. The method also involves generating performance metrics related to the sensor of the vehicle based on the comparison.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: January 2, 2024
    Assignee: Waymo LLC
    Inventors: Stephanie McArthur, Mark Alexander Shand, Colin Braley
  • Patent number: 11841464
    Abstract: The present disclosure relates to systems and methods that facilitate light detection and ranging operations. An example method includes determining, for at least one light-emitter device of a plurality of light-emitter devices, a light pulse schedule. The plurality of light-emitter devices is operable to emit light along a plurality of emission vectors. The light pulse schedule is based on a respective emission vector of the at least one light-emitter device and a three-dimensional map of an external environment. The light pulse schedule includes at least one light pulse parameter and a listening window duration. The method also includes causing the at least one light-emitter device of the plurality of light-emitter devices to emit a light pulse according to the light pulse schedule. The light pulse interacts with an external environment.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: December 12, 2023
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Patent number: 11774590
    Abstract: A computing system may operate a LIDAR device to emit light pulses in accordance with a time sequence including a time-varying dither. The system may then determine that the LIDAR detected return light pulses during corresponding detection periods for each of two or more emitted light pulses. Responsively, the system may determine that the detected return light pulses have (i) detection times relative to corresponding emission times of a plurality of first emitted light pulses that are indicative of a first set of ranges and (ii) detection times relative to corresponding emission times of a plurality of second emitted light pulses that are indicative of a second set of ranges. Given this, the system may select between using the first set of ranges as a basis for object detection and using the second set of ranges as a basis for object detection, and may then engage in object detection accordingly.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: October 3, 2023
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20230198617
    Abstract: Systems and methods for performing operations based on LIDAR communications are described. An example device may include one or more processors and a memory coupled to the one or more processors. The memory includes instructions that, when executed by the one or more processors, cause the device to receive data associated with a modulated optical signal emitted by a transmitter of a first LIDAR device and received by a receiver of a second LIDAR device coupled to a vehicle and the device, generate a rendering of an environment of the vehicle based on information from one or more LIDAR devices coupled to the vehicle, and update the rendering based on the received data. Updating the rendering includes updating an object rendering of an object in the environment of the vehicle. The instructions further cause the device to provide the updated rendering for display on a display coupled to the vehicle.
    Type: Application
    Filed: February 14, 2023
    Publication date: June 22, 2023
    Inventors: Salil Shree Pandit, Mark Alexander Shand, Reed Gerard Alexander Morse
  • Publication number: 20230147270
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Publication number: 20230120380
    Abstract: Example embodiments relate to selective deactivation of light emitters for interference mitigation in light detection and ranging (lidar) devices. An example method includes deactivating one or more light emitters within a lidar device during a firing cycle. The method also includes identifying whether interference is influencing measurements made by the lidar device. Identifying whether interference is influencing measurements made by the lidar device includes determining, for each light detector of the lidar device that is associated with the one or more light emitters deactivated during the firing cycle, whether a light signal was detected during the firing cycle.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventor: Mark Alexander Shand
  • Publication number: 20230108351
    Abstract: Systems and methods described herein relate to LIDAR systems and their operation. An example method includes partitioning a plurality of light-emitter devices into a plurality of groups. Each light-emitter device is associated with a given group of the plurality of groups. The method also includes selecting a group from the plurality of groups according to a predetermined group order and selecting one or more light-emitter devices from the plurality of light-emitter devices of the selected group according to a firing order. The method yet further includes, at a predetermined shot dither time, causing the selected light-emitter device to emit at least one light pulse. The predetermined shot dither time is based on a shot dither schedule. The method may additionally include repeating the method to provide a complete scan in which each light-emitter device of the plurality of light-emitter devices has emitted at least one light pulse.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventor: Mark Alexander Shand
  • Patent number: 11616573
    Abstract: Systems and methods for performing operations based on LIDAR communications are described. An example device may include one or more processors and a memory coupled to the one or more processors. The memory includes instructions that, when executed by the one or more processors, cause the device to receive data associated with a modulated optical signal emitted by a transmitter of a first LIDAR device and received by a receiver of a second LIDAR device coupled to a vehicle and the device, generate a rendering of an environment of the vehicle based on information from one or more LIDAR devices coupled to the vehicle, and update the rendering based on the received data. Updating the rendering includes updating an object rendering of an object in the environment of the vehicle. The instructions further cause the device to provide the updated rendering for display on a display coupled to the vehicle.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: March 28, 2023
    Assignee: Waymo LLC
    Inventors: Salil Shree Pandit, Mark Alexander Shand, Reed Gerard Alexander Morse
  • Publication number: 20230092544
    Abstract: The present disclosure relates to systems and methods involving Light Detection and Ranging (LIDAR or lidar) systems. Namely, an example method includes causing a light source of a LIDAR system to emit light along an emission vector. The method also includes adjusting the emission vector of the emitted light and determining an elevation angle component of the emission vector. The method further includes dynamically adjusting a per pulse energy of the emitted light based on the determined elevation angle component. An example system includes a vehicle and a light source coupled to the vehicle. The light source is configured to emit light along an emission vector toward an environment of the vehicle. The system also includes a controller operable to determine an elevation angle component of the emission vector and dynamically adjust a per pulse energy of the emitted light based on the determined elevation angle component.
    Type: Application
    Filed: November 1, 2022
    Publication date: March 23, 2023
    Inventor: Mark Alexander Shand
  • Patent number: 11592524
    Abstract: Methods and systems for laser point clouds are described herein. The method and system may include receiving, at a computing device, lidar data indicative of an environment of a vehicle from a first lidar data source, where the lidar data includes a first plurality of data points indicative of locations of reflections from the environment and further includes a respective intensity for each data point. The method and system also include determining a first surface normal for at least a first data point of the first plurality of data points. The method and system further includes determining a first angle of incidence for the first data point based on the surface normal. Additionally, the method and system includes adjusting the intensity of the first data point based on the first angle of incidence to create a first adjusted intensity for the first data point.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: February 28, 2023
    Assignee: Waymo LLC
    Inventors: Mingcheng Chen, Christian Lauterbach, Blaise Gassend, Nathaniel Quillin, Luke Wachter, Gil Shotan, Mark Alexander Shand
  • Patent number: 11561281
    Abstract: Example embodiments relate to selective deactivation of light emitters for interference mitigation in light detection and ranging (lidar) devices. An example method includes deactivating one or more light emitters within a lidar device during a firing cycle. The method also includes identifying whether interference is influencing measurements made by the lidar device. Identifying whether interference is influencing measurements made by the lidar device includes determining, for each light detector of the lidar device that is associated with the one or more light emitters deactivated during the firing cycle, whether a light signal was detected during the firing cycle.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: January 24, 2023
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Patent number: 11558566
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: January 17, 2023
    Assignee: Waymo LLC
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Patent number: 11543495
    Abstract: Systems and methods described herein relate to LIDAR systems and their operation. An example method includes partitioning a plurality of light-emitter devices into a plurality of groups. Each light-emitter device is associated with a given group of the plurality of groups. The method also includes selecting a group from the plurality of groups according to a predetermined group order and selecting one or more light-emitter devices from the plurality of light-emitter devices of the selected group according to a firing order. The method yet further includes, at a predetermined shot dither time, causing the selected light-emitter device to emit at least one light pulse. The predetermined shot dither time is based on a shot dither schedule. The method may additionally include repeating the method to provide a complete scan in which each light-emitter device of the plurality of light-emitter devices has emitted at least one light pulse.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 3, 2023
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Patent number: 11513196
    Abstract: The present disclosure relates to systems and methods involving Light Detection and Ranging (LIDAR or lidar) systems. Namely, an example method includes causing a light source of a LIDAR system to emit light along an emission vector. The method also includes adjusting the emission vector of the emitted light and determining an elevation angle component of the emission vector. The method further includes dynamically adjusting a per pulse energy of the emitted light based on the determined elevation angle component. An example system includes a vehicle and a light source coupled to the vehicle. The light source is configured to emit light along an emission vector toward an environment of the vehicle. The system also includes a controller operable to determine an elevation angle component of the emission vector and dynamically adjust a per pulse energy of the emitted light based on the determined elevation angle component.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 29, 2022
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20220308191
    Abstract: A computing system may operate a LIDAR device to emit and detect light pulses in accordance with a time sequence including standard detection period(s) that establish a nominal detection range for the LIDAR device and extended detection period(s) having durations longer than those of the standard detection period(s). The system may then make a determination that the LIDAR detected return light pulse(s) during extended detection period(s) that correspond to particular emitted light pulse(s). Responsively, the computing system may determine that the detected return light pulse(s) have detection times relative to corresponding emission times of particular emitted light pulse(s) that are indicative of one or more ranges. Given this, the computing system may make a further determination of whether or not the one or more ranges indicate that an object is positioned outside of the nominal detection range, and may then engage in object detection in accordance with the further determination.
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Inventor: Mark Alexander Shand