Patents by Inventor Alexander Shoemaker

Alexander Shoemaker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934519
    Abstract: The methods of harvesting cells are provided, wherein the methods comprise introducing a processing material and a source material into a processing loop. The processing loop comprises a processing chamber and a filtering device. The processing material and the source material are circulating through the processing chamber and the filtering device, wherein the processing chamber has a mass; balancing an influx of the processing material into the processing chamber with a permeate flux of the filtering device to maintain the mass of the processing chamber at a constant value; and collecting the cells in a collection chamber. Cell harvesting devices are also provided for processing and harvesting cells using a control law to balance the mass of the processing chamber through the entire process.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 2, 2021
    Assignee: Global Life Sciences Solutions USA LLC
    Inventors: Jaydeep Roy, Andrew Michael Leach, Weston Blaine Griffin, Stefan Rakuff, Philip Alexander Shoemaker
  • Patent number: 10365190
    Abstract: Methods and systems for processing samples fixed to a porous substrate generally comprising, a compressor defining one or more fluid isolation areas, a support, for the porous substrate, having an opening corresponding to one or more of the fluid isolation areas of the compressor, an actuator that causes at least a portion of the compressor to press against the porous substrate, a fluid inlet having access to the fluid isolation area at least when the compressor is pressed against the porous substrate, and a fluid outlet to receive fluid, through the opening in the support corresponding to the fluid isolation area of the compressor, at least when the compressor is pressed against the porous substrate.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: July 30, 2019
    Assignee: Whatman International Limited
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout, Xuefeng Wang, Kashan Ali Shaikh, Greg Darryl Goddard
  • Patent number: 10088399
    Abstract: A high-throughput system for processing biological material that comprises: a tray that supports a functionally-closed fluid path subsystem comprising, a vessel for containing and enabling the biological material to separate into two or more distinct submaterials; one or more receptacles to receive one or more of the submaterials from the vessel; a filtration device; a conduit through which one or more submaterials are transported between at least the vessel and the filtration device; and a first engagement structure; a processing unit comprising, a pumping device for moving one or more of the submaterials between at least the vessel and the filtration device via the conduit; a second engagement structure corresponding to the first engagement structure; a locking mechanism for at least temporarily holding the tray in a fixed position relative to the processing unit; a control device that automatically starts and stops the pumping device in response to one or more commands.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: October 2, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Weston Blaine Griffin, Jaydeep Roy, Phillip Alexander Shoemaker, William Patrick Waters
  • Publication number: 20160282241
    Abstract: Methods and systems for processing samples fixed to a porous substrate generally comprising, a compressor defining one or more fluid isolation areas, a support, for the porous substrate, having an opening corresponding to one or more of the fluid isolation areas of the compressor, an actuator that causes at least a portion of the compressor to press against the porous substrate, a fluid inlet having access to the fluid isolation area at least when the compressor is pressed against the porous substrate, and a fluid outlet to receive fluid, through the opening in the support corresponding to the fluid isolation area of the compressor, at least when the compressor is pressed against the porous substrate.
    Type: Application
    Filed: January 11, 2016
    Publication date: September 29, 2016
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout, Xuefeng Wang, Kashan Ali Shaikh, Greg Darryl Goddard
  • Patent number: 9347033
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer, introducing the adipose tissue into the vessel, introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: May 24, 2016
    Assignee: General Electric Company
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Patent number: 9254484
    Abstract: Methods and systems for processing samples fixed to a porous substrate generally comprising, a compressor defining one or more fluid isolation areas, a support, for the porous substrate, having an opening corresponding to one or more of the fluid isolation areas of the compressor, an actuator that causes at least a portion of the compressor to press against the porous substrate, a fluid inlet having access to the fluid isolation area at least when the compressor is pressed against the porous substrate, and a fluid outlet to receive fluid, through the opening in the support corresponding to the fluid isolation area of the compressor, at least when the compressor is pressed against the porous substrate.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: February 9, 2016
    Assignee: WHATMAN INTERNATIONAL LIMITED
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout, Xuefeng Wang, Kashan Ali Shaikh, Greg Darryl Goddard
  • Publication number: 20150337263
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer, introducing the adipose tissue into the vessel, introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Application
    Filed: July 30, 2015
    Publication date: November 26, 2015
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Publication number: 20150233803
    Abstract: A high-throughput system for processing biological material that comprises: a tray that supports a functionally-closed fluid path subsystem comprising, a vessel for containing and enabling the biological material to separate into two or more distinct submaterials; one or more receptacles to receive one or more of the submaterials from the vessel; a filtration device; a conduit through which one or more submaterials are transported between at least the vessel and the filtration device; and a first engagement structure; a processing unit comprising, a pumping device for moving one or more of the submaterials between at least the vessel and the filtration device via the conduit; a second engagement structure corresponding to the first engagement structure; a locking mechanism for at least temporarily holding the tray in a fixed position relative to the processing unit; a control device that automatically starts and stops the pumping device in response to one or more commands.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Inventors: Weston Blaine Griffin, Jaydeep Roy, Phillip Alexander Shoemaker, William Patrick Waters
  • Patent number: 9109198
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer; introducing the adipose tissue into the vessel; introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Patent number: 9034280
    Abstract: A high-throughput system for processing biological material that comprises: a tray that supports a functionally-closed fluid path subsystem comprising, a vessel for containing and enabling the biological material to separate into two or more distinct submaterials; one or more receptacles to receive one or more of the submaterials from the vessel; a filtration device; a conduit through which one or more submaterials are transported between at least the vessel and the filtration device; and a first engagement structure; a processing unit comprising, a pumping device for moving one or more of the submaterials between at least the vessel and the filtration device via the conduit; a second engagement structure corresponding to the first engagement structure; a locking mechanism for at least temporarily holding the tray in a fixed position relative to the processing unit; a control device that automatically starts and stops the pumping device in response to one or more commands.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: May 19, 2015
    Assignee: GENERAL ELECTRIC CORPORATION
    Inventors: Weston Blaine Griffin, Jaydeep Roy, Phillip Alexander Shoemaker, William Patrick Waters
  • Publication number: 20140248714
    Abstract: Methods and systems for processing samples fixed to a porous substrate generally comprising, a compressor defining one or more fluid isolation areas, a support, for the porous substrate, having an opening corresponding to one or more of the fluid isolation areas of the compressor, an actuator that causes at least a portion of the compressor to press against the porous substrate, a fluid inlet having access to the fluid isolation area at least when the compressor is pressed against the porous substrate, and a fluid outlet to receive fluid, through the opening in the support corresponding to the fluid isolation area of the compressor, at least when the compressor is pressed against the porous substrate.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 4, 2014
    Applicant: WHATMAN INTERNATIONAL LIMITED
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout, Xuefeng Wang, Kashan Ali Shaikh, Greg Darryl Goddard
  • Patent number: 8713775
    Abstract: An apparatus and method are provided for servicing a dynamoelectric machine component. The apparatus includes a tool delivery mechanism adapted for delivering a tool to a desired location in the dynamoelectric machine, and a tool support fixture adapted to be secured onto the body of the dynamoelectric machine, where the tool support fixture can be used for supporting and adjusting the tool delivery mechanism. A sleeve mechanism is attached to the tool support fixture, and the sleeve mechanism is disposed around a portion of the tool delivery mechanism. The apparatus is adapted to service the component of the dynamoelectric machine in-situ.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Zhipeng Zhang, Philip Alexander Shoemaker, Robert Jeffrey Pieciuk, Weston Blaine Griffin, Arvind Rangarajan, Diego Quinones, Prabhjot Singh
  • Patent number: 8689649
    Abstract: Automated methods and systems for punching out pieces of a porous substrate for biological samples comprising: loading the porous substrate onto a support comprising a die and an opening; moving a receptacle support in at least a z-direction to position a receptacle relative to the support so that an opening in the receptacle is aligned and substantially flush with the opening in the support; actuating a punching head so that the punching head passes through the die, thereby punching a piece out of the porous substrate; and actuating an ejector pin to eject the punched piece from the porous substrate support and into the receptacle aligned with the opening in the support.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 8, 2014
    Assignee: General Electric Company
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout
  • Patent number: 8685749
    Abstract: Methods and systems for processing samples fixed to a porous substrate generally comprising, a compressor defining one or more fluid isolation areas, a support, for the porous substrate, having an opening corresponding to one or more of the fluid isolation areas of the compressor, an actuator that causes at least a portion of the compressor to press against the porous substrate, a fluid inlet having access to the fluid isolation area at least when the compressor is pressed against the porous substrate, and a fluid outlet to receive fluid, through the opening in the support corresponding to the fluid isolation area of the compressor, at least when the compressor is pressed against the porous substrate.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: April 1, 2014
    Assignee: Whatman International Limited
    Inventors: Philip Alexander Shoemaker, Weston Blaine Griffin, Erin Jean Finehout, Xuefeng Wang, Kashan Ali Shaikh, Greg Darryl Goddard
  • Patent number: 8512566
    Abstract: Disclosed herein is a disposable fluid path for processing complex materials. The disposable fluid path comprises a gravity assisted disposable system for separating a biological sample into two or more distinct submaterials through sedimentation. The fluid path is comprised of a sample delivery conduit and bag-set wherein the bag set comprising a tubing assembly, a separation assembly, and a filter assembly. Methods of using the system are also disclosed.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Weston Blaine Griffin, Jaydeep Roy, Eric Douglas Williams, Philip Alexander Shoemaker, James Mitchell White
  • Publication number: 20130029411
    Abstract: The methods of harvesting cells are provided, wherein the methods comprise introducing a processing material and a source material into a processing loop. The processing loop comprises a processing chamber and a filtering device. The processing material and the source material are circulating through the processing chamber and the filtering device, wherein the processing chamber has a mass; balancing an influx of the processing material into the processing chamber with a permeate flux of the filtering device to maintain the mass of the processing chamber at a constant value; and collecting the cells in a collection chamber. Cell harvesting devices are also provided for processing and harvesting cells using a control law to balance the mass of the processing chamber through the entire process.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jaydeep Roy, Andrew Michael Leach, Weston Blaine Griffin, Stefan Rakuff, Philip Alexander Shoemaker
  • Publication number: 20130017360
    Abstract: An apparatus separates a band of resin-impregnated fiber material into strips and disposes the strips between parallel pin rows of a pinmat to form a layer of strips. The apparatus includes a pinmat-following roller comprising a first roller mounted on a first central axle on which the first roller can rotate and slide transversely, a first circular rib surrounding the first roller and capable of fitting between adjacent pin rows of a pinmat, and a circular groove in the first roller for coupling with the band-separating roller. The apparatus further includes a band-separating roller comprising a second roller mounted on a second central axle on which the second roller can rotate and slide transversely, multiple radially projecting disks from the second roller for separating the band of resin-impregnated fiber, and a second circular rib surrounding the second roller capable of coupling with the circular groove of the pinmat-following roller.
    Type: Application
    Filed: January 12, 2012
    Publication date: January 17, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mark Ernest Vermilyea, BOWDEN KIRKPATRICK, PHILIP ALEXANDER SHOEMAKER, TERRENCE PAUL VERNES
  • Patent number: 8354404
    Abstract: Disclosed are compounds which inhibit the activity of anti-apoptotic protein family members, compositions containing the compounds and uses of the compounds for preparing medicaments for treating diseases during which occurs expression one or more than one of an anti-apoptotic protein family member.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: January 15, 2013
    Assignee: Abbott Laboratories
    Inventors: Milan Bruncko, Hong Ding, Steven Elmore, Aaron Kunzer, Christopher L. Lynch, William McClellan, Cheol-Min Park, Andrew Petros, Xiaohong Song, Xilu Wang, Noah Tu, Michael Wendt, Alexander Shoemaker, Michael Mitten
  • Publication number: 20120317771
    Abstract: An apparatus and method are provided for servicing a dynamoelectric machine component. The apparatus includes a tool delivery mechanism adapted for delivering a tool to a desired location in the dynamoelectric machine, and a tool support fixture adapted to be secured onto the body of the dynamoelectric machine, where the tool support fixture can be used for supporting and adjusting the tool delivery mechanism. A sleeve mechanism is attached to the tool support fixture, and the sleeve mechanism is disposed around a portion of the tool delivery mechanism. The apparatus is adapted to service the component of the dynamoelectric machine in-situ.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Inventors: Zhipeng Zhang, Philip Alexander Shoemaker, Robert Jeffrey Pieciuk, Weston Blaine Griffin, Arvind Rangarajan, Diego Quinones, Prabhjot Singh
  • Publication number: 20120276628
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer; introducing the adipose tissue into the vessel; introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy