Patents by Inventor Alexander Striebeck

Alexander Striebeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884972
    Abstract: In traditional plant breeding approaches, chemical mutagenesis may be utilized to introduce nucleotide substitutions at random in the genome of a plant, i.e. without possibilities to control the sites of nucleotide changes. Because of genome complexities, the statistical probability is extremely little when it comes to finding a predetermined nucleotide substitution. The present invention, however, demonstrates how a novel, alternative use of digital polymerase chain reaction (dPCR), preferably droplet dPCR (ddPCR), is developed to exploit finding of specific nucleotide substitutions in mutated genes. The entire platform comprises a screening method with a library of mutagenized organisms, digital PCR-based systems and a set-up to propagate and analyze identified, mutated organisms.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: January 30, 2024
    Assignee: Carlsberg A/S
    Inventors: Toni Wendt, Ole Olsen, Søren Knudsen, Hanne Cecille Thomsen, Birgitte Skadhauge, Magnus Wohlfahrt Rasmussen, Massimiliano Carciofi, Alexander Striebeck
  • Publication number: 20230111237
    Abstract: The present invention provides barley plants, or parts thereof, having a high limit dextrinase activity. In particular, barley plants carrying a mutation in HvLDI gene are provided. Furthermore, plant products prepared from said barley plants, or parts thereof, are described as well as methods of producing the same.
    Type: Application
    Filed: March 1, 2021
    Publication date: April 13, 2023
    Applicant: Carlsberg A/S
    Inventors: Ole Olsen, Finn Lok, Søren Knudsen, Lucia Marri, Alexander Striebeck, Pai Rosager Pedas, Jose Antonio Cuesta-Seijo, Hanne Cecilie Thomsen, Katarzyna Birch Braune
  • Publication number: 20190194723
    Abstract: In traditional plant breeding approaches, chemical mutagenesis may be utilized to introduce nucleotide substitutions at random in the genome of a plant, i.e. without possibilities to control the sites of nucleotide changes. Because of genome complexities, the statistical probability is extremely little when it comes to finding a predetermined nucleotide substitution. The present invention, however, demonstrates how a novel, alternative use of digital polymerase chain reaction (dPCR), preferably droplet dPCR (ddPCR), is developed to exploit finding of specific nucleotide substitutions in mutated genes. The entire platform comprises a screening method with a library of mutagenized organisms, digital PCR-based systems and a set-up to propagate and analyze identified, mutated organisms.
    Type: Application
    Filed: June 23, 2017
    Publication date: June 27, 2019
    Applicant: Carlsberg A/S
    Inventors: Toni Wendt, Ole Olsen, Søren Knudsen, Hanne Cecille Thomsen, Birgitte Skadhauge, Magnus Wohlfahrt Rasmussen, Massimiliano Carciofi, Alexander Striebeck