Patents by Inventor Alexander Teran

Alexander Teran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9972863
    Abstract: Provided herein are ionically conductive solid-state compositions that include ionically conductive inorganic particles in a matrix of an organic material. The resulting composite material has high ionic conductivity and mechanical properties that facilitate processing. In particular embodiments, the ionically conductive solid-state compositions are compliant and may be cast as films. In some embodiments of the present invention, solid-state electrolytes including the ionically conductive solid-state compositions are provided. In some embodiments of the present invention, electrodes including the ionically conductive solid-state compositions are provided. The present invention further includes embodiments that are directed to methods of manufacturing the ionically conductive solid-state compositions and batteries incorporating the ionically conductive solid-state compositions.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: May 15, 2018
    Assignee: Blue Current, Inc.
    Inventors: Alexander Teran, Joanna Burdynska, Benjamin Rupert, Eduard Nasybulin, Saranya Venugopal, Simmi Kaur Uppal
  • Patent number: 9972838
    Abstract: Provided herein are ionically conductive solid-state compositions that include ionically conductive inorganic particles in a matrix of an organic material. The resulting composite material has high ionic conductivity and mechanical properties that facilitate processing. In particular embodiments, the ionically conductive solid-state compositions are compliant and may be cast as films. In some embodiments of the present invention, solid-state electrolytes including the ionically conductive solid-state compositions are provided. In some embodiments of the present invention, electrodes including the ionically conductive solid-state compositions are provided. The present invention further includes embodiments that are directed to methods of manufacturing the ionically conductive solid-state compositions and batteries incorporating the ionically conductive solid-state compositions.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: May 15, 2018
    Assignee: Blue Current, Inc.
    Inventors: Alexander Teran, Joanna Burdynska, Benjamin Rupert, Eduard Nasybulin, Saranya Venugopal, Simmi Kaur Uppal
  • Patent number: 9926411
    Abstract: Provided herein are methods of forming solid-state ionically conductive composite materials that include particles of an inorganic phase in a matrix of an organic phase. The methods involve forming the composite materials from a precursor that is polymerized in-situ after being mixed with the particles. The polymerization occurs under applied pressure that causes particle-to-particle contact. In some embodiments, once polymerized, the applied pressure may be removed with the particles immobilized by the polymer matrix. In some implementations, the organic phase includes a cross-linked polymer network. Also provided are solid-state ionically conductive composite materials and batteries and other devices that incorporate them. In some embodiments, solid-state electrolytes including the ionically conductive solid-state composites are provided. In some embodiments, electrodes including the ionically conductive solid-state composites are provided.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: March 27, 2018
    Assignee: Blue Current, Inc.
    Inventors: Joanna Burdynska, Alexander Teran, Benjamin Rupert, Eduard Nasybulin
  • Publication number: 20180034048
    Abstract: Provided herein are ionically conductive solid-state compositions that include ionically conductive inorganic particles in a matrix of an organic material. The resulting composite material has high ionic conductivity and mechanical properties that facilitate processing. In particular embodiments, the ionically conductive solid-state compositions are compliant and may be cast as films. In some embodiments of the present invention, solid-state electrolytes including the ionically conductive solid-state compositions are provided. In some embodiments of the present invention, electrodes including the ionically conductive solid-state compositions are provided. The present invention further includes embodiments that are directed to methods of manufacturing the ionically conductive solid-state compositions and batteries incorporating the ionically conductive solid-state compositions.
    Type: Application
    Filed: May 26, 2017
    Publication date: February 1, 2018
    Inventors: Alexander Teran, Joanna Burdynska, Benjamin Rupert, Eduard Nasybulin, Saranya Venugopal, Simmi Kaur Uppal
  • Publication number: 20180034061
    Abstract: Provided herein are ionically conductive solid-state compositions that include ionically conductive inorganic particles in a matrix of an organic material. The resulting composite material has high ionic conductivity and mechanical properties that facilitate processing. In particular embodiments, the ionically conductive solid-state compositions are compliant and may be cast as films. In some embodiments of the present invention, solid-state electrolytes including the ionically conductive solid-state compositions are provided. In some embodiments of the present invention, electrodes including the ionically conductive solid-state compositions are provided. The present invention further includes embodiments that are directed to methods of manufacturing the ionically conductive solid-state compositions and batteries incorporating the ionically conductive solid-state compositions.
    Type: Application
    Filed: May 26, 2017
    Publication date: February 1, 2018
    Inventors: Alexander Teran, Joanna Burdynska, Benjamin Rupert, Eduard Nasybulin, Saranya Venugopal, Simmi Kaur Uppal
  • Publication number: 20180034096
    Abstract: Provided herein are ionically conductive solid-state compositions that include ionically conductive inorganic particles in a matrix of an organic material. The resulting composite material has high ionic conductivity and mechanical properties that facilitate processing. In particular embodiments, the ionically conductive solid-state compositions are compliant and may be cast as films. In some embodiments of the present invention, solid-state electrolytes including the ionically conductive solid-state compositions are provided. In some embodiments of the present invention, electrodes including the ionically conductive solid-state compositions are provided. The present invention further includes embodiments that are directed to methods of manufacturing the ionically conductive solid-state compositions and batteries incorporating the ionically conductive solid-state compositions.
    Type: Application
    Filed: May 26, 2017
    Publication date: February 1, 2018
    Inventors: Alexander Teran, Joanna Burdynska, Benjamin Rupert, Eduard Nasybulin, Saranya Venugopal, Simmi Kaur Uppal
  • Patent number: 9543619
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include phosphate-terminated or phosphonate-terminated perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including phosphate-terminated or phosphonate-terminated perfluoropolyethers (PFPEs) and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: January 10, 2017
    Assignee: Blue Current, Inc.
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Patent number: 9540312
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including functionally substituted PFPEs and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: January 10, 2017
    Assignee: Blue Current, Inc.
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Publication number: 20160301107
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include perfluoroalkanes (PFAs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including functionally substituted PFAs and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Application
    Filed: February 1, 2016
    Publication date: October 13, 2016
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Publication number: 20160226101
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including functionally substituted PFPEs and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Publication number: 20160226103
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including functionally substituted PFPEs and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Publication number: 20160221926
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including functionally substituted PFPEs and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Publication number: 20160226102
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including functionally substituted PFPEs and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska
  • Publication number: 20160226104
    Abstract: Provided herein are functionally substituted fluoropolymers suitable for use in liquid and solid non-flammable electrolyte compositions. The functionally substituted fluoropolymers include phosphate-terminated or phosphonate-terminated perfluoropolyethers (PFPEs) having high ionic conductivity. Also provided are non-flammable electrolyte compositions including phosphate-terminated or phosphonate-terminated perfluoropolyethers (PFPEs) and alkali-metal ion batteries including the non-flammable electrolyte compositions.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: Alexander Teran, Benjamin Rupert, Eduard Nasybulin, Joanna Burdynska