Patents by Inventor Alexander V. Suvorov

Alexander V. Suvorov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8216924
    Abstract: Fabrication of a Group III-nitride transistor device can include implanting dopant ions into a stacked Group III-nitride channel layer and Group III-nitride barrier layer to form source/drain regions therein with a channel region therebetween. The channel layer has a lower bandgap energy than the barrier layer along a heterojunction interface between the channel layer and the barrier layer. The source/drain regions have a lower defect centers energy than the channel region. The source/drain regions and the channel region are exposed to a laser beam with a wavelength having a photon energy that is less than the bandgap energy of the channel region and higher than the defect centers energy of the source/drain regions to locally heat the source/drain regions to a temperature that anneals the source/drain regions.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: July 10, 2012
    Assignee: Cree, Inc.
    Inventor: Alexander V. Suvorov
  • Publication number: 20110169013
    Abstract: A method of growing polygonal carbon from photoresist and resulting structures are disclosed. Embodiments of the invention provide a way to produce polygonal carbon, such as graphene, by energizing semiconductor photoresist. The polygonal carbon can then be used for conductive paths in a finished semiconductor device, to replace the channel layers in MOSFET devices on a silicon carbide base, or any other purpose for which graphene or graphene-like carbon material formed on a substrate is suited. In some embodiments, the photoresist layer forms both the polygonal carbon layer and an amorphous carbon layer over the polygonal carbon layer, and the amorphous carbon layer is removed to leave the polygonal carbon on the substrate.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 14, 2011
    Applicant: Cree, Inc.
    Inventor: Alexander V. Suvorov
  • Publication number: 20110092057
    Abstract: Fabrication of a Group III-nitride transistor device can include implanting dopant ions into a stacked Group III-nitride channel layer and Group III-nitride barrier layer to form source/drain regions therein with a channel region therebetween. The channel layer has a lower bandgap energy than the barrier layer along a heterojunction interface between the channel layer and the barrier layer. The source/drain regions have a lower defect centers energy than the channel region. The source/drain regions and the channel region are exposed to a laser beam with a wavelength having a photon energy that is less than the bandgap energy of the channel region and higher than the defect centers energy of the source/drain regions to locally heat the source/drain regions to a temperature that anneals the source/drain regions.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 21, 2011
    Inventor: Alexander V. Suvorov
  • Patent number: 7476594
    Abstract: A method is disclosed for fabricating a silicon nitride regions in silicon carbide. The method includes the steps of implanting a sufficient dose and energy of nitrogen ions into a silicon carbide substrate maintained at a temperature above about 350° C. to produce an as-implanted layer of a silicon nitride composition in the silicon carbide, and annealing the as-implanted layer to form a silicon nitride composition. In some embodiments, the formed region of silicon nitride provides an insulating layer. In some embodiments, the silicon nitride region is buried under a surface layer of silicon carbide. Methods of separating silicon carbide by implantation and lift-off are additionally disclosed.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: January 13, 2009
    Assignee: Cree, Inc.
    Inventor: Alexander V. Suvorov
  • Publication number: 20080121895
    Abstract: Methods of fabricating a semiconductor device include forming a first semiconductor layer of a first conductivity type and having a first dopant concentration, and forming a second semiconductor layer on the first semiconductor layer. The second semiconductor layer has a second dopant concentration that is less than the first dopant concentration. Ions are implanted into the second semiconductor layer to form an implanted region of the first conductivity type extending through the second semiconductor layer to contact the first semiconductor layer. A first electrode is formed on the implanted region of the second semiconductor layer, and a second electrode is formed on a non-implanted region of the second semiconductor layer. Related devices are also discussed.
    Type: Application
    Filed: November 6, 2006
    Publication date: May 29, 2008
    Inventors: Scott T. Sheppard, Alexander V. Suvorov
  • Patent number: 5604135
    Abstract: A light emitting diode is disclosed that emits in the green portion of the visible spectrum, along with a method of producing the diode. The light emitting diode comprises a 6H silicon carbide substrate having a planar surface inclined more than one degree off axis toward one of the <11 20> directions; an ohmic contact to the substrate; a first epitaxial layer of 6H silicon carbide on the inclined surface of the substrate and having a first conductivity type; a second epitaxial layer of 6H silicon carbide on the first layer and having the opposite conductivity type for forming a p-n junction between the first and second layers; and an ohmic contact to the second epitaxial layer. The diode produces a peak wavelength of between about 525 and 535 nanometers with a spectral half width of no more than about 90 nanometers.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: February 18, 1997
    Assignee: Cree Research, Inc.
    Inventors: John A. Edmond, Alexander V. Suvorov