Patents by Inventor Alexander Weck

Alexander Weck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210325003
    Abstract: An apparatus (112) for heating a fluid is proposed. The apparatus (112) comprises at least one electrically conductive pipeline (120) for receiving the fluid at least one electrically conductive coil (110) at least one AC voltage source (114), which is connected to the coil (110) and is designed for an AC voltage to be applied to the coil (110). The coil (110) is designed for generating at least one electromagnetic field by applying the AC voltage. The pipeline (120) and the coil (110) are arranged in such a way that the electromagnetic field of the coil (110) induces in the pipeline (120) an electrical current, which warms up the pipeline (120) by Joulean heat, which is produced when the electrical current passes through conducting pipe material, for heating the fluid.
    Type: Application
    Filed: August 15, 2019
    Publication date: October 21, 2021
    Inventors: Alexander WECK, Heinrich LAIB
  • Patent number: 10213773
    Abstract: The present invention relates to a process for converting oxygenates to olefins, comprising (1) providing a gas stream comprising one or more ethers; (2) contacting the gas stream provided in (1) with a catalyst, the catalyst comprising a support substrate and a layer applied to the substrate, the layer comprising one or more zeolites of the MFI, MEL and/or MWW structure type.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: February 26, 2019
    Assignee: BASF SE
    Inventors: Kirsten Spannhoff, Florina Corina Patcas, Ekkehard Schwab, Alexander Weck, Kerem Bay
  • Patent number: 10144681
    Abstract: A process for the oxidative dehydrogenation of n-butenes to butadiene is disclosed herein, in which the formation of butadiene peroxides from butadiene in the work-up of the product gas mixture from the oxidative dehydrogenation is effectively prevented.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: December 4, 2018
    Assignee: BASF SE
    Inventors: Jan Pablo Josch, Alexander Weck, Sonja Giesa, Steffen Bütehorn, Ragavendra Prasad Balegedde Ramachandran, Regina Benfer, Markus Weber
  • Patent number: 10005702
    Abstract: The present invention relates to a catalyst for the conversion of oxygenates to olefins, comprising a support substrate and a layer applied to the substrate, wherein the layer comprises one or more zeolites of the MFI, MEL and/or MWW structure type, the one or more zeolites comprising one or more alkaline earth metals, to the preparation and use thereof, and to a process for converting oxygenates to olefins using the catalyst.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: June 26, 2018
    Assignee: BASF SE
    Inventors: Kirsten Spannhoff, Florina Corina Patcas, Ekkehard Schwab, Alexander Weck, Kerem Bay, Matthias Mielke, Oliver Seel
  • Patent number: 9611191
    Abstract: A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s).
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: April 4, 2017
    Assignee: BASF SE
    Inventors: Gerhard Olbert, Carlos Tellaeche Herranz, Norbert Asprion, Alexander Weck, Ellen Dahlhoff
  • Publication number: 20160296923
    Abstract: The present invention relates to a process for converting oxygenates to olefins, comprising (1) providing a gas stream comprising one or more ethers; (2) contacting the gas stream provided in (1) with a catalyst, the catalyst comprising a support substrate and a layer applied to the substrate, the layer comprising one or more zeolites of the MFI, MEL and/or MWW structure type.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 13, 2016
    Inventors: Kirsten Spannhoff, Florina Corina Patcas, Ekkehard Schwab, Alexander Weck, Kerem Bay
  • Publication number: 20140243565
    Abstract: A process for producing biohydrocarbons, comprising the steps of a) total hydrogenation of animal and/or vegetable oils, fats or mixtures thereof, forming propane from the glycerol component of the oils, fats or mixtures thereof and the corresponding alkanes from the fatty acid component of the oils, fats or mixtures thereof, b) cracking the hydrocarbons obtained in step a) by thermal cracking, catalytic cracking or hydrocracking to form the biohydrocarbons.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Applicant: BASF SE
    Inventor: Alexander Weck
  • Patent number: 8802019
    Abstract: A reactor includes an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream using an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing, which is arranged in the longitudinal direction of the reactor and is gastight in the circumferential direction, into an inner region having one or more catalytically active zones, each having a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided and into an outer region, which is supplied with an inert gas, arranged coaxially to the inner region. A heat exchanger is connected to the housing at one end of the reactor.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova, Jasmina Kessel, Alexander Weck, Alireza Rezai
  • Publication number: 20140200379
    Abstract: The invention relates to a process for preparing butadiene from n-butenes, which comprises the following steps: A) provision of a feed gas stream a comprising n-butenes; B) introduction of the feed gas stream a comprising n-butenes and an oxygen-comprising gas into at least one dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b in at least one compression stage, giving at least one condensate stream c1 comprising water and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) separation of incondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 b
    Type: Application
    Filed: January 8, 2014
    Publication date: July 17, 2014
    Applicant: BASF SE
    Inventors: Jan Pablo Josch, Alexander Weck, Sonja Giesa, Steffen Büteborn, Ragavendra Prasad Balegedde Ramachandran, Regina Benfer, Markus Weber
  • Publication number: 20140171709
    Abstract: A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s).
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Carlos Tellaeche Herranz, Norbert Asprion, Alexander Weck, Ellen Dahlhoff
  • Patent number: 8680353
    Abstract: A process for preparing oligomers by continuous oligomerization of butenes is described, wherein a) a feed stream 1) comprising 1-butene and 2-butene in a total concentration of from 10 to 70% by weight and from 10 to 60% by weight of isobutane is reacted until more than 60% by weight of the 1-butene comprised in the feed stream 1 but less than 50% by weight of the 2-butene comprised in feed stream 1 have been converted into oligomers. b) The oligomers obtained in a) are separated off and optionally passed to a further work-up and the remaining residual stream is fed to work-up by distillation. c) Isobutane is separated off by distillation from the residual stream, and d) the isobutane-depleted stream obtained after the work-up by distillation c) is reacted to form oligomers.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Sven Crone, Oliver Ryll, Till Blum, Alexander Weck, Rainer Papp, Roland Krokoszinski, Heinrich-Josef Blankertz
  • Publication number: 20140005455
    Abstract: The present invention relates to a process for converting oxygenates to olefins, comprising (1) providing a gas stream comprising one or more ethers; (2) contacting the gas stream provided in (1) with a catalyst, the catalyst comprising a support substrate and a layer applied to the substrate, the layer comprising one or more zeolites of the MFI, MEL and/or MWW structure type.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 2, 2014
    Inventors: Kirsten Spannhoff, Florina Corina Patcas, Ekkehard Schwab, Alexander Weck, Kerem Bay
  • Publication number: 20140005456
    Abstract: The present invention relates to a catalyst for the conversion of oxygenates to olefins, comprising a support substrate and a layer applied to the substrate, wherein the layer comprises one or more zeolites of the MFI, MEL and/or MWW structure type, the one or more zeolites comprising one or more alkaline earth metals, to the preparation and use thereof, and to a process for converting oxygenates to olefins using the catalyst.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 2, 2014
    Inventors: Kirsten Spannhoff, Florina Corina Patcas, Ekkehard Schwab, Alexander Weck, Kerem Bay
  • Patent number: 8476463
    Abstract: Processes for decreasing fumaric acid deposits in preparing maleic anhydride by heterogeneously catalyzed oxidation of a hydrocarbon with molecular oxygen. Maleic anhydride is absorbed from the crude mixture in an absorbent in an absorption column and desorbed in a desorption column, the entirety or portion of absorbent depleted in maleic anhydride, for controlled precipitation of fumaric acid, being cooled and/or concentrated by evaporating a portion of absorbent such that the difference between the concentration of fumaric acid in the recycle stream at the outlet of the desorption column under existing conditions and the equilibrium concentration of fumaric acid according to the solubility curve after cooling and/or evaporation of a portion of absorbent is ?250 ppm by weight, and the fumaric acid precipitated as a solid is removed completely or partly from the absorbent recycling system and the fumaric acid-depleted absorbent is recycled completely or partly to the absorption column.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: July 2, 2013
    Assignee: BASF SE
    Inventors: Gunther Windecker, Jens Weiguny, Alexander Weck, Ellen Dahlhoff, Wolf-Steffen Weiβker, Jörg Heilek, Thomas Krug, Ralf Freyberger
  • Patent number: 8461219
    Abstract: Process for preparing olefins, which comprises the following steps: a) preparation of a synthesis gas comprising carbon monoxide and hydrogen, b) introduction of carbon dioxide recirculated from step d) into the synthesis gas during or after the preparation of synthesis gas as per step a), c) conversion of the synthesis gas having a hydrogen to carbon monoxide ratio of ?1.2:1 which is obtained in step b) into olefins in the presence of a Fischer-Tropsch catalyst, d) removal of the carbon dioxide comprised in the reaction product from step c), where the ratio of hydrogen to carbon monoxide in step c) is set via step b).
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: June 11, 2013
    Assignee: BASF SE
    Inventors: Jochen Steiner, Kerem Bay, Ekkehard Schwab, Alexander Weck
  • Publication number: 20130131416
    Abstract: Process for preparing oligomers by continuous oligomerization of butenes, wherein a) a feed stream comprising 1-butene and 2-butene in a total concentration of from 10 to 70% by weight and from 10 to 60% by weight of isobutane is used (hereinafter referred to as feed stream 1), b) this feed stream 1 is reacted until more than 60% by weight of the 1-butene comprised in the feed stream 1 but less than 50% by weight of the 2-butene comprised in feed stream 1 have been converted into oligomers, c) the oligomers obtained in b) are separated off and optionally passed to a further work-up and the remaining residual stream is fed to work-up by distillation, d) isobutane is separated off by distillation from the residual stream, e) the isobutane-depleted stream obtained after the work-up by distillation d) (hereinafter referred to as feed stream 2) is reacted to form oligomers.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Inventors: Sven CRONE, Oliver RYLL, Till BLUM, Alexander WECK, Rainer PAPP, Roland KROKOSZINSKI, Heinrich-Josef BLANKERTZ
  • Patent number: 8420879
    Abstract: The invention relates to a process for workup of a stream (1) comprising butene and/or butadiene, butane, hydrogen and/or nitrogen and carbon dioxide, comprising: (a) absorption of stream (1) with a mixture (5) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to obtain a stream (9) comprising N-methylpyrrolidone, water, butene and/or butadiene, butane, and optionally carbon dioxide, and a stream (7) comprising hydrogen and/or nitrogen and butane, (b) extractive distillation of stream (9) with a stream (13) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to separate the stream (9) into a stream (17) comprising N-methylpyrrolidone, water, butene and/or butadiene, and a stream (15) comprising essentially butane, and optionally carbon dioxide, (c) distillation of stream (17) into a stream (23) comprising essentially N-methylpyrrolidone and water, and a stream (21) comprising butene and/or butadiene.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 16, 2013
    Assignee: BASF SE
    Inventors: Albena Kostova, Regina Benfer, Jochen Götz, Alireza Rezai, Aristides Morillo, Gerhard Olbert, Peter Pfab, Grigorios Kolios, Markus Weber, Alexander Weck
  • Patent number: 8338644
    Abstract: A process for preparing N,N-dimethylacetamide (DMAC) by continuously reacting methyl acetate (MeOAc) with dimethylamine (DMA) in the presence of a basic catalyst, wherein MeOAc is used in the form of a methanolic solution which is obtained as a by-product in the preparation of polyTHF by transesterifying polyTHF diacetate with methanol.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 25, 2012
    Assignee: BASF SE
    Inventors: Horst Grafmans, Steffen Maas, Alexander Weck, Heinz Ruetter, Michael Schulz, Karl-Heinz Ross
  • Publication number: 20120226087
    Abstract: The invention relates to a process for workup of a stream (1) comprising butene and/or butadiene, butane, hydrogen and/or nitrogen and carbon dioxide, comprising: (a) absorption of stream (1) with a mixture (5) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to obtain a stream (9) comprising N-methylpyrrolidone, water, butene and/or butadiene, butane, and optionally carbon dioxide, and a stream (7) comprising hydrogen and/or nitrogen and butane, (b) extractive distillation of stream (9) with a stream (13) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to separate the stream (9) into a stream (17) comprising N-methylpyrrolidone, water, butene and/or butadiene, and a stream (15) comprising essentially butane, and optionally carbon dioxide, (c) distillation of stream (17) into a stream (23) comprising essentially N-methylpyrrolidone and water, and a stream (21) comprising butene and/or butadiene.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: BASF SE
    Inventors: Albena Kostova, Regina Benfer, Jochen Götz, Alireza Rezai, Aristides Morillo, Gerhard Olbert, Peter Pfab, Grigorios Kolios, Markus Weber, Alexander Weck
  • Publication number: 20120157737
    Abstract: A reactor includes an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream using an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing, which is arranged in the longitudinal direction of the reactor and is gastight in the circumferential direction, into an inner region having one or more catalytically active zones, each having a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided and into an outer region, which is supplied with an inert gas, arranged coaxially to the inner region. A heat exchanger is connected to the housing at one end of the reactor.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova, Jasmina Kessel, Alexander Weck, Alireza Rezai