Patents by Inventor Alexander Y. FELDMAN

Alexander Y. FELDMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10217930
    Abstract: A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 26, 2019
    Assignee: AKOUSTIS, INC.
    Inventors: Alexander Y. Feldman, Mark D. Boomgarden, Michael P. Lewis, Jeffrey B. Shealy, Ramakrishna Vetury
  • Publication number: 20190036504
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 31, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20190020324
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20190020325
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Patent number: 10110190
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110188
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110189
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Publication number: 20180123540
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180123541
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180123542
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20170264256
    Abstract: A method of manufacture for an acoustic resonator device. The method includes forming a nucleation layer characterized by nucleation growth parameters overlying a substrate and forming a strained piezoelectric layer overlying the nucleation layer. The strained piezoelectric layer is characterized by a strain condition and piezoelectric layer parameters. The process of forming the strained piezoelectric layer can include an epitaxial growth process configured by nucleation growth parameters and piezoelectric layer parameters to modulate the strain condition in the strained piezoelectric layer. By modulating the strain condition, the piezoelectric properties of the resulting piezoelectric layer can be adjusted and improved for specific applications.
    Type: Application
    Filed: July 27, 2016
    Publication date: September 14, 2017
    Inventors: Shawn R. GIBB, Alexander Y. FELDMAN, Mark D. BOOMGARDEN, Michael P. LEWIS, Ramakrishna VETURY, Jeffrey B. SHEALY