Patents by Inventor Alexandra Chaumonnot

Alexandra Chaumonnot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110111232
    Abstract: A mesostructured material is described, which consists of at least two elementary spherical particles, each one of said particles comprising a mesostructured matrix based on aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, and an aluminium oxide content representing more than 46 wt. % of the mass of said matrix, which has amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D greater than 10 ?m and less than or equal to 100 ?m (10<D(?m)?100). Said mesostructured matrix can also contain silicon oxide. Each spherical particle of the mesostructured material can also contain zeolite nanocrystals so as to form a mixed porosity material of both mesostructured and zeolitic nature. The preparation of said material is also described.
    Type: Application
    Filed: February 26, 2009
    Publication date: May 12, 2011
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Publication number: 20110105300
    Abstract: A mesostructured aluminosilicate material is described, which consists of at least two elementary spherical particles, each one of said spherical particles consisting of a matrix based on silicon oxide and aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, a Si/Al molar ratio at least equal to 1 and amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D such that 10<D(?m)?100. A method of preparing said material and its application in the spheres of refining and petrochemistry are also described.
    Type: Application
    Filed: February 26, 2009
    Publication date: May 5, 2011
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Publication number: 20110084001
    Abstract: A method of oligomerization of an olefinic hydrocarbon feed is described, consisting of contacting said feed with at least one catalyst comprising at least one silica-alumina, the silica content by weight of said catalyst being between 5 and 95 wt.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 14, 2011
    Applicant: IFP Energies nouvelles
    Inventors: Amandine Cabiac, Alexandra Chaumonnot
  • Publication number: 20110073522
    Abstract: The present invention concerns a catalyst comprising at least one amorphous material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said amorphous material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said spherical particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having amorphous and microporous walls with a thickness in the range 1.5 to 50 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Application
    Filed: May 13, 2009
    Publication date: March 31, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Publication number: 20110039102
    Abstract: Material with hierarchical porosity consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprising at least one matrix based on silicon oxide, said material having a macropore volume measured by mercury porosimetry ranging between 0.05 and 1 ml/g, a mesopore volume measured by nitrogen volumetric analysis ranging between 0.01 and 1 ml/g and a micropore volume measured by nitrogen volumetric analysis ranging between 0.03 and 0.4 ml/g, said matrix having amorphous walls. The preparation of said material is also described.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 17, 2011
    Applicant: IFP
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere
  • Publication number: 20110033375
    Abstract: Hierarchical porosity material consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprises at least one matrix based on silicon oxide and exhibiting crystallized walls, said material having a macropore volume measured by mercury porosimetry ranging between 0.05 and 1 ml/g, a mesopore volume measured by nitrogen volumetric analysis ranging between 0.01 and 1 ml/g and a micropore volume measured by nitrogen volumetric analysis ranging between 0.03 and 0.4 ml/g. The preparation of said material and use of same as adsorbent or as acidic solid is also described.
    Type: Application
    Filed: August 29, 2008
    Publication date: February 10, 2011
    Applicant: IFP
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere
  • Patent number: 7879224
    Abstract: The present invention concerns doped catalysts on an alumino-silicate support with an adapted macropore content and hydrocracking/hydroconversion and hydrotreatment processes employing them. The catalyst comprises at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table, a controlled quantity of phosphorus (optionally in combination with boron and/or silicon) as a doping element, and a non-zeolitic support based on alumina-silica containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2).
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: February 1, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Magalie Roy-Auberger, Patrick Bourges, Tivadar Cseri, Maryline Delage, Nathalie Lett
  • Patent number: 7851320
    Abstract: A mesostructured aluminosilicate material is described, constituted by at least two spherical elementary particles, each of said spherical particles being constituted by a matrix based on silicon oxide and aluminum oxide, having a pore size in the range 1.5 to 30 nm, a Si/Al molar ratio of at least 1, having amorphous walls with a thickness in the range 1 to 20 nm, said spherical elementary particles having a maximum diameter of 10 ?m. A process for preparing said material and its application in the fields of refining and petrochemistry are also described.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: December 14, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurélie Coupe, Clément Sanchez, Patrick Euzen, Cédric Boissiere, David Grosso
  • Publication number: 20100297002
    Abstract: Material with hierarchical and organized porosity in the microporosity and mesoporosity domains, consisting of at least two elementary spherical particles, each one of said particles comprising a matrix based on silicon oxide, mesostructured, having a mesopore diameter ranging between 1.5 and 30 nm and exhibiting microporous and crystallized walls of thickness ranging between 1 and 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The preparation of said material is also described.
    Type: Application
    Filed: August 29, 2008
    Publication date: November 25, 2010
    Applicant: IFP
    Inventors: Alexandra Chaumonnot, Stephanie Pega, Clement Sanchez, Cedric Boissiere
  • Publication number: 20100291387
    Abstract: Material with hierarchical porosity consisting of at least two elementary spherical particles, each one of said particles comprising a matrix based on silicon oxide, mesostructured, having a mesopore diameter ranging between 1.5 and 30 nm and exhibiting amorphous and microporous walls of thickness ranging between 1.5 and 50 nm, said elementary spherical particles having a maximum diameter of 200 microns. The matrix based on silicon oxide can contain aluminium. The preparation of said material is also described.
    Type: Application
    Filed: August 19, 2008
    Publication date: November 18, 2010
    Applicant: IEP
    Inventors: Alexandra Chaumonnot, Stephanie Pega, Clement Sanchez, Cedric Boissiere
  • Patent number: 7807598
    Abstract: A mesostructured material that consists of at least two elementary spherical particles, each of said particles comprising a mesostructured matrix based on aluminum oxide and having a pore size of between 1.5 and 30 nm, an aluminum oxide content that represents more than 46% by weight relative to the mass of said matrix, which has amorphous walls with a thickness of between 1 and 30 nm and whereby said elementary spherical particles have a maximum diameter of 10 ?m, is described. Said mesostructured matrix can also contain silicon oxide. Each of the spherical particles of the mesostructured material can also contain zeolitic nanocrystals so as to form a material with a mixed porosity that is both mesostructured and zeolitic in nature. The preparation of said material is also described.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: October 5, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, David Grosso
  • Publication number: 20100140138
    Abstract: The invention describes a catalyst comprising at least one material with a hierarchical porosity comprising silicon and at least one hydrodehydrogenating element from group VIB and/or group VIII of the periodic table of the elements. Said material with a hierarchical porosity comprising silicon is constituted by at least two elementary spherical particles, each of said spherical particles comprising zeolitic nanocrystals having a pore size in the range 0.2 to 2 nm and a matrix based on silicon oxide, which is mesostructured, having a pore size in the range 1.5 to 30 nm and having amorphous walls with a thickness in the range 1 to 30 nm, said elementary spherical particles having a maximum diameter of 100 ?m. The matrix based on silicon oxide may contain aluminium.
    Type: Application
    Filed: October 29, 2007
    Publication date: June 10, 2010
    Inventors: Alexandra Chaumonnot, Patrick Bourges
  • Publication number: 20100133147
    Abstract: A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.
    Type: Application
    Filed: July 6, 2007
    Publication date: June 3, 2010
    Inventors: Alexandra Chaumonnot, Denis Guillaume, Benoit Fremon, Karin Marchand, Renaud Revel
  • Publication number: 20100069618
    Abstract: The invention concerns a process for preparing a hybrid organic-inorganic material (HOIM) with phosphorus-containing bridges between the surface of an inorganic substrate containing an element M and one or more organic groups of the covalent M-O-P-R type, said process using, as a precursor for said organic group or groups, at least one organophosphorus acid halide with formula RxP(O)Xy in which x=1 or 2, y=3?x, X being a halogen and R designating at least one organic alkyl, aryl or aryl-alkyl group. Non-exhaustive applications for the hybrid organic-inorganic material obtained by the process of the invention are in the fields of anti-corrosion, lubrication, microelectronics, nanotechnologies, composite materials, heterogeneous catalysis, supported catalysis, depollution and biomedical applications.
    Type: Application
    Filed: July 6, 2007
    Publication date: March 18, 2010
    Applicant: IFP
    Inventors: Renaud Revel, Florence Brodard-Severac, Gilles Guerrero, Hubert Mutin, Alain Forestiere, Alexandra Chaumonnot
  • Publication number: 20090326300
    Abstract: A process for cracking tert-alkyl ether(s) selected from among tert-amyl methyl ether (TAME) and ethyl tert-amyl ether (ETAE) for the production of tertiary olefins comprising bringing said tert-alkyl ether(s) into contact with at least one catalyst that is formed by at least one mesostructured hybrid organic-inorganic material that consists of at least two spherical elementary particles, whereby each of said spherical particles consists of a mesostructured matrix with a silicon oxide base to which are linked organic groups with acid terminal reactive functions, said groups representing less than 20 mol % of said matrix that is present in each of said spherical elementary particles, which have a maximum diameter of between 50 nm and 200 ?m.
    Type: Application
    Filed: May 21, 2009
    Publication date: December 31, 2009
    Applicant: IFP
    Inventors: Vincent COUPARD, Alexandra Chaumonnot
  • Publication number: 20090232720
    Abstract: A mesostructured aluminosilicate material is described, constituted by at least two spherical elementary particles, each of said spherical particles being constituted by a matrix based on silicon oxide and aluminium oxide, having a pore size in the range 1.5 to 30 nm, a Si/Al molar ratio of at least 1, having amorphous walls with a thickness in the range 1 to 20 nm, said spherical elementary particles having a maximum diameter of 10 ?m. A process for preparing said material and its application in the fields of refining and petrochemistry are also described.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 17, 2009
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Patrick Euzen, Cedric Boissiere, David Grosso
  • Publication number: 20090192342
    Abstract: A process for oligomerizing an olefinic hydrocarbon feed is described which consists of bringing said feed into contact with a catalyst comprising a silica-alumina, the silica content of said catalyst being in the range 5% to 95% by weight, said catalyst being prepared using a process comprising at least: a) mixing at least one alumina compound which is partially soluble in an acid medium with either at least one silica compound which is completely soluble in the reaction mixture or a combination formed by at least one silica compound and at least one alumina compound, said silica and alumina compounds being completely soluble in the reaction mixture, in order to form a solid precursor of said catalyst; b) hydrothermal treatment of the solid derived from step a) by calcining in moist air for a period in the range 4 to 7 hours.
    Type: Application
    Filed: January 27, 2009
    Publication date: July 30, 2009
    Applicant: IFP
    Inventors: Vincent COUPARD, Alexandra Chaumonnot, Laurent Simon
  • Publication number: 20090188834
    Abstract: The present invention concerns doped catalysts on an alumino-silicate support with an adapted macropore content and hydrocracking/hydroconversion and hydrotreatment processes employing them. The catalyst comprises at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table, a controlled quantity of phosphorus (optionally in combination with boron and/or silicon) as a doping element, and a non-zeolitic support based on alumina-silica containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2).
    Type: Application
    Filed: September 20, 2005
    Publication date: July 30, 2009
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Magalie Roy-Auberger, Partick Bourges, Tivadar Cseri, Maryline Delage, Nathalie Lett
  • Patent number: 7563743
    Abstract: This invention relates to doped catalysts on an aluminosilicate substrate with a low content of macropores and the hydrocracking/hydroconversion and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table and a dopant in a controlled quantity that is selected from among phosphorus, boron, and silicon and a non-zeolitic substrate with a silica-alumina base that contains a quantity of more than 15% by weight and of less than or equal to 95% by weight of silica (SiO2).
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 21, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Carole Bobin, Patrick Bourges, Christophe Gueret, Hugues Dulot
  • Publication number: 20090118556
    Abstract: The present invention concerns doped catalysts on a mixed zeolite/alumino-silicate support with a low macropore content, and hydrocracking/hydroconversion and hydrotreatment processes employing them. The catalyst comprises at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table and a doping element in a controlled quantity selected from phosphorus, boron and silicon, and a support based on zeolite Y defined by a lattice parameter a of the unit cell in the range 24.40×10?10 m to 24.15×10?10 m and silica-alumina containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2).
    Type: Application
    Filed: December 13, 2005
    Publication date: May 7, 2009
    Inventors: Patrick Euzen, Patrick Bourges, Christophe Gueret, Carole Bobin, Alexandra Chaumonnot, Hugues Dulot