Patents by Inventor Alexandra Echegaray

Alexandra Echegaray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11083082
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 3, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathleen Ann Fadden, James A. Busby, David C. Long, John R. Dangler, Alexandra Echegaray, Michael J. Fisher, William Santiago-Fernandez
  • Patent number: 10531561
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathleen Ann Fadden, James A. Busby, David C. Long, John R. Dangler, Alexandra Echegaray, Michael J. Fisher, William Santiago-Fernandez
  • Publication number: 20200008295
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Application
    Filed: September 11, 2019
    Publication date: January 2, 2020
    Inventors: Kathleen Ann FADDEN, James A. BUSBY, David C. LONG, John R. DANGLER, Alexandra ECHEGARAY, Michael J. FISHER, William SANTIAGO-FERNANDEZ
  • Publication number: 20190261506
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Application
    Filed: February 26, 2019
    Publication date: August 22, 2019
    Inventors: Kathleen Ann FADDEN, James A. BUSBY, David C. LONG, John R. DANGLER, Alexandra ECHEGARAY, Michael J. FISHER, William SANTIAGO-FERNANDEZ
  • Patent number: 10306753
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: May 28, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathleen Ann Fadden, James A. Busby, David C. Long, John R. Dangler, Alexandra Echegaray, Michael J. Fisher, William Santiago-Fernandez
  • Patent number: 10042972
    Abstract: A method for assigning nets to wiring planes for generating a chip design includes executing, by a computer, a zero wire load timing session for a placed but unbufferred chip design. All nets of the chip design are set to a single wide wiring track without wiring plane assignments. A delta time delay is added to each sink of each of the nets to represent an estimated time of flight (TOF) delay. The nets wiring plane or width type for a particular pin is upgraded to a type having improved TOF characteristics. Each of the nets are compared against new predetermined slack and distance targets and new assigned wiring plane or width type determined to consume additional wiring track resources, and based on results, the upgrade is repeated or a design for session timing state for the nets is output to represent the unbufferred chip design.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 7, 2018
    Assignee: International Business Machines Corporation
    Inventors: Alexandra Echegaray, Bernd Kemmier, Jesse P. Surprise, Stephen K. Szulewski
  • Publication number: 20170212976
    Abstract: A method for assigning nets to wiring planes for generating a chip design includes executing, by a computer, a zero wire load timing session for a placed but unbufferred chip design. All nets of the chip design are set to a single wide wiring track without wiring plane assignments. A delta time delay is added to each sink of each of the nets to represent an estimated time of flight (TOF) delay. The nets wiring plane or width type for a particular pin is upgraded to a type having improved TOF characteristics. Each of the nets are compared against new predetermined slack and distance targets and new assigned wiring plane or width type determined to consume additional wiring track resources, and based on results, the upgrade is repeated or a design for session timing state for the nets is output to represent the unbufferred chip design.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 27, 2017
    Inventors: Alexandra Echegaray, Bernd Kemmier, Jesse P. Surprise, Stephen K. Szulewski
  • Patent number: 9684756
    Abstract: Nets are assigned to wiring planes for generating a chip design. A computer is caused to execute a zero wire load timing session for a placed but unbufferred chip design. All nets of the chip design are set to a single wide wiring track without wiring plane assignments. A delta time delay is added to each sink of each of the nets to represent an estimated time of flight (TOF) delay. The nets wiring plane or width type for a particular pin is upgraded to a type having improved TOF characteristics. Each of the nets are compared against new predetermined slack and distance targets and new assigned wiring plane or width type determined to consume additional wiring track resources, and based on results, the upgrade is repeated or a design for session timing state for the nets is output to represent the unbufferred chip design.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: Alexandra Echegaray, Bernd Kemmler, Jesse P. Surprise, Stephen K. Szulewski
  • Patent number: 8171442
    Abstract: A method to at least partially isolate a net of a circuit design is provided and includes testing a timing characteristic of a circuit design, identifying from a result of the testing a net of the circuit design to be at least partially isolated from an adjacent net and determining a percentage of the identified net to be partially isolated.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alexandra Echegaray, Heidi L. Lagares, Douglas S. Search, Stephen Szulewski
  • Publication number: 20110066989
    Abstract: A method to at least partially isolate a net of a circuit design is provided and includes testing a timing characteristic of a circuit design, identifying from a result of the testing a net of the circuit design to be at least partially isolated from an adjacent net and determining a percentage of the identified net to be partially isolated.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alexandra Echegaray, Heidi L. Lagares, Douglas S. Search, Stephen Szulewski