Patents by Inventor Alexandra Elyse Hartman

Alexandra Elyse Hartman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220271343
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Application
    Filed: March 2, 2022
    Publication date: August 25, 2022
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Patent number: 11276885
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 15, 2022
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Publication number: 20190221891
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 18, 2019
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Publication number: 20180263234
    Abstract: An environmentally friendly method and device to eliminate insect pests utilizing lighting, sound, pheromones or scents, alone or in combination. This present invention to remove pests avoids the expense of biocide technologies that have not been developed fully, the damage to people and the environment from the use of dangerous chemical pesticides, and add to sustainable agriculture efforts including integrated pest management.
    Type: Application
    Filed: September 27, 2016
    Publication date: September 20, 2018
    Applicant: IPM PRODUCTS MANUFACTURING, INC.
    Inventors: Randy J. SASAKI, Thomas BROWN, Alexandra Elyse HARTMAN
  • Publication number: 20170094960
    Abstract: An environmentally friendly method and device to eliminate insect pests utilizing lighting, sound, pheromones or scents, alone or in combination. This present invention to remove pests avoids the expense of biocide technologies that have not been developed fully, the damage to people and the environment from the use of dangerous chemical pesticides, and add to sustainable agriculture efforts including integrated pest management.
    Type: Application
    Filed: September 27, 2016
    Publication date: April 6, 2017
    Applicant: IPM PRODUCTS MANUFACTURING, LLC
    Inventors: RANDY J. SASAKI, THOMAS BROWN, ALEXANDRA ELYSE HARTMAN
  • Publication number: 20140151606
    Abstract: Compositions, methods and manufactures are disclosed for an ultraviolet-curable conductive ink and for a binding medium which may be utilized for both a dielectric ink and for a conductive ink. A representative ultraviolet-curable binding medium composition comprises: a difunctional aliphatic polycarbonate urethane acrylate oligomer; a monofunctional monomer such as an isophoryl acrylate monomer or an acrylate ester monomer; a difunctional monomer such as a difunctional alkoxylated acrylate or methacrylate monomer; a first photoinitiator such as an ?-hydroxyketone class photoinitiator; and a second photoiniator such as an ?-aminoketone class photoinitiator. A plurality of conductive particles, such as silver particles and graphene particles, may be included in the binding medium to provide an ultraviolet-curable conductive ink and, when cured, a conductive layer or wire, for example.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 5, 2014
    Inventors: Mark David Lowenthal, Mark Lewandowski, Alexandra Elyse Hartman
  • Publication number: 20140151607
    Abstract: Compositions, methods and manufactures are disclosed for an ultraviolet-curable conductive ink and for a binding medium which may be utilized for both a dielectric ink and for a conductive ink. A representative ultraviolet-curable binding medium composition comprises: a difunctional aliphatic polycarbonate urethane acrylate oligomer; a monofunctional monomer such as an isophoryl acrylate monomer or an acrylate ester monomer; a difunctional monomer such as a difunctional alkoxylated acrylate or methacrylate monomer; a first photoinitiator such as an ?-hydroxyketone class photoinitiator; and a second photoiniator such as an ?-aminoketone class photoinitiator. A plurality of conductive particles, such as silver particles and graphene particles, may be included in the binding medium to provide an ultraviolet-curable conductive ink and, when cured, a conductive layer or wire, for example.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 5, 2014
    Inventors: Mark David Lowenthal, Mark Lewandowski, Alexandra Elyse Hartman