Patents by Inventor Alexandra Golobic

Alexandra Golobic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230417936
    Abstract: A formulation for forming a styrene-based scintillator using light-directed additive manufacturing techniques includes a base monomer, a primary dye, a secondary dye, and a cationic photoinitiator. The base monomer includes one or more styrene-derivative monomers.
    Type: Application
    Filed: December 21, 2022
    Publication date: December 28, 2023
    Inventors: Jason Brodsky, Michael Joseph Ford, Alexandra Golobic, Connor Hook, Elaine Lee, Dominique Henry Porcincula, Xianyi Zhang, Caleb Chandler, Alan Sellinger
  • Publication number: 20230383131
    Abstract: A product includes a three-dimensional printed polymer structure formed from at least one filament. The three-dimensional printed polymer structure has a plurality of layers arranged in a geometric pattern, the layers being formed from the at least one filament, where the at least one filament comprises a polysiloxane material having a plurality of closed cell pores formed therein.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Andrew Neil Mabe, Eric B. Duoss, Jeremy Lenhardt, Du Nguyen, Thomas S. Wilson, Alexandra Golobic
  • Publication number: 20230302727
    Abstract: The present disclosure relates to a method for additively manufacturing a part. The method may involve using a reservoir to hold a granular material feedstock, and using a nozzle in communication with the reservoir to release the granular material feedstock in a controlled fashion from the reservoir to form at least one layer of a part. The method may further involve using an excitation source for applying a signal to the nozzle which induces a controlled release of the granular material feedstock from the nozzle as needed to pattern the granular material feedstock as necessary to form a layer of the part.
    Type: Application
    Filed: May 19, 2023
    Publication date: September 28, 2023
    Inventors: Nikola DUDUKOVIC, Roger AINES, Sarah BAKER, Joshua R. DEOTTE, Eric B. DUOSS, Jeremy Taylor FEASTER, Alexandra GOLOBIC, Julie MANCINI, Christopher M. SPADACCINI, Seth Evan WATTS, Michael John TROKSA
  • Patent number: 11697246
    Abstract: The present disclosure relates to an additive manufacturing system. In one embodiment the system makes use of a reservoir for holding a granular material feedstock. A nozzle is in communication with the reservoir for releasing the granular material feedstock in a controlled fashion from the reservoir to form at least one layer of a part. An excitation source is included for applying a signal which induces a controlled release of the granular material feedstock from the nozzle as needed, to pattern the granular material feedstock as necessary to form a layer of the part.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 11, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Nikola Dudukovic, Roger Aines, Sarah Baker, Joshua R. Deotte, Eric B. Duoss, Jeremy Taylor Feaster, Alexandra Golobic, Julie Mancini, Christopher M. Spadaccini, Seth Evan Watts, Michael John Troksa
  • Patent number: 11339847
    Abstract: The present disclosure relates to an energy absorbing three dimensional (3D) structure. The structure may have an outer shell formed from a shell material. The outer shell may have a void forming a core volume. A transformative feedstock is contained in the void. The transformative feedstock is encapsulated within the outer shell, within the void, and provides enhanced energy absorbing properties to the 3D structure.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: May 24, 2022
    Assignees: Lawrence Livermore National Security, LLC, The Regents of the University Of California
    Inventors: Julie A. Mancini, Eric B. Duoss, Alexandra Golobic, Mark Christian Messner, Christopher M. Spadaccini, Kenneth J. Loh
  • Publication number: 20220064481
    Abstract: A product includes a porous three-dimensional printed structure having printed filaments arranged in a geometric pattern. The printed filaments include a material having a plurality of gas-filled microballoons. The printed structure has hierarchical porosity including an inter-filament porosity defined by the arrangement of the printed filaments, and an intra-filament porosity of the material. The intra-filament porosity is defined by the plurality of gas-filled microballoons in the material of the printed filament.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Inventors: Jennifer Nicole Rodriguez, Eric B. Duoss, Alexandra Golobic, Jeremy M. Lenhardt, Lemuel Perez Perez, Ward Small, IV, Thomas S. Wilson, Amanda Wu, Timothy Dexter Yee, Stephanie Schulze
  • Publication number: 20200238681
    Abstract: The present disclosure relates to an energy absorbing three dimensional (3D) structure. The structure may have an outer shell formed from a shell material. The outer shell may have a void forming a core volume. A transformative feedstock is contained in the void. The transformative feedstock is encapsulated within the outer shell, within the void, and provides enhanced energy absorbing properties to the 3D structure.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Inventors: Julie A. JACKSON, Eric B. DUOSS, Alexandra GOLOBIC, Mark Christian MESSNER, Christopher M. SPADACCINI, Kenneth J. LOH
  • Publication number: 20200190345
    Abstract: According to one aspect of an inventive concept, an ink formulation for forming a gas blown polysiloxane product includes a polysiloxane having at least one vinyl group, a silane crosslinker, a catalyst, a gas blowing agent, and a thixotropic agent. According to another aspect of an inventive concept, a product includes a three-dimensional printed polymer structure formed from at least one filament. The three-dimensional printed polymer structure has a plurality of layers arranged in a geometric pattern, the layers being formed from the at least one filament, where the at least one filament comprises a polysiloxane material having a plurality of closed cell pores formed therein.
    Type: Application
    Filed: October 21, 2019
    Publication date: June 18, 2020
    Inventors: Andrew Neil Mabe, Eric B. Duoss, Jeremy Lenhardt, Du Nguyen, Thomas S. Wilson, Alexandra Golobic
  • Patent number: 10661549
    Abstract: The present disclosure relates to a method of forming an energy absorbing three dimensional (3D) structure. The method involves forming an outer shell for the 3D structure from a shell material, the outer shell having a void forming a core volume. The method also involves filling the core volume with a transformative liquid. When the 3D structure is fully formed, the transformative liquid is encapsulated within the outer shell and provides enhanced energy absorbing properties to the 3D structure.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 26, 2020
    Assignees: Lawrence Livermore National Security, LLC, The Regents of the Univeristy of California
    Inventors: Julie A. Jackson, Eric Duoss, Alexandra Golobic, Mark Christian Messner, Christopher Spadaccini, Kenneth J. Loh
  • Publication number: 20200147874
    Abstract: The present disclosure relates to an additive manufacturing system. In one embodiment the system makes use of a reservoir for holding a granular material feedstock. A nozzle is in communication with the reservoir for releasing the granular material feedstock in a controlled fashion from the reservoir to form at least one layer of a part. An excitation source is included for applying a signal which induces a controlled release of the granular material feedstock from the nozzle as needed, to pattern the granular material feedstock as necessary to form a layer of the part.
    Type: Application
    Filed: October 18, 2019
    Publication date: May 14, 2020
    Inventors: Nikola DUDUKOVIC, Roger AINES, Sarah BAKER, Joshua R. DEOTTE, Eric B. DUOSS, Jeremy Taylor FEASTER, Alexandra GOLOBIC, Julie MANCINI, Christopher M. SPADACCINI, Seth Evan WATTS, Michael John TROKSA
  • Patent number: 10563308
    Abstract: According to one embodiment, a three-dimensional structure includes: at least one photopolymer having at least one metal dispersed throughout at least portions of a bulk of the structure. The structure is characterized by features having a horizontal and/or vertical feature resolution in a range from several hundred nanometers to several hundred microns. The portions of the bulk throughout which metal is dispersed may optionally be selectively determined. In more embodiments, the structure may have electroless plated metal formed on surfaces thereof, alternatively or in addition to the metal dispersed throughout the bulk of the structure. The electroless plating may be achieved without the use of a surface activation bath. Corresponding methods for forming various embodiments of such three dimensional structures are also disclosed.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: February 18, 2020
    Assignee: Lawrence Livermore National Security
    Inventors: Alexandra Golobic, Eric Duoss, Julie A. Jackson, Andrew Pascall
  • Publication number: 20180050500
    Abstract: The present disclosure relates to a method of forming an energy absorbing three dimensional (3D) structure. The method involves forming an outer shell for the 3D structure from a shell material, the outer shell having a void forming a core volume. The method also involves filling the core volume with a transformative liquid. When the 3D structure is fully formed, the transformative liquid is encapsulated within the outer shell and provides enhanced energy absorbing properties to the 3D structure.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Julie A. JACKSON, Eric DUOSS, Alexandra GOLOBIC, Mark Christian MESSNER, Christopher SPADACCINI, Kenneth J. LOH
  • Publication number: 20180016680
    Abstract: According to one embodiment, a three-dimensional structure includes: at least one photopolymer having at least one metal dispersed throughout at least portions of a bulk of the structure. The structure is characterized by features having a horizontal and/or vertical feature resolution in a range from several hundred nanometers to several hundred microns. The portions of the bulk throughout which metal is dispersed may optionally be selectively determined. In more embodiments, the structure may have electroless plated metal formed on surfaces thereof, alternatively or in addition to the metal dispersed throughout the bulk of the structure. The electroless plating may be achieved without the use of a surface activation bath. Corresponding methods for forming various embodiments of such three dimensional structures are also disclosed.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: Alexandra Golobic, Eric Duoss, Julie A. Jackson, Andrew Pascall