Patents by Inventor Alexandra Groth
Alexandra Groth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12293524Abstract: A prediction model is provided which is capable of predicting a correctness of a segmentation by a segmentation algorithm. The prediction model may be trained using a machine learning technique, and after training used to predict the correctness of a segmentation of a boundary in respective image portions of an image by the segmentation algorithm. The predicted correctness may then be visualized, for example as an overlay of the segmentation.Type: GrantFiled: October 14, 2019Date of Patent: May 6, 2025Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Alexandra Groth, Rolf Jurgen Weese
-
Publication number: 20250054136Abstract: A computer implemented method of identifying changes in a subject's heart or an adjacent region over time. The method comprising: receiving a set of imaging data relating to a subject's heart that has been obtained at a plurality of points in time; generating an anatomical model of the subject's heart for each of the images in the set of imaging data so as to provide a set of anatomical models of the subject's heart corresponding to the plurality of points in time; and aligning each of the anatomical models in the set of anatomical models relative to one another so as to provide a set of aligned data of the subject's heart. The aligned data are for identifying changes in at least one region of the subject's heart by comparing the anatomical models in the set of aligned anatomical models using a machine learning model.Type: ApplicationFiled: December 9, 2022Publication date: February 13, 2025Inventors: Nils Thorben Gessert, Tanja Lossau, Jochen Peters, Frank Michael Weber, Irina Waechter-Stehle, Arne Ewald, André Gooßen, Alexandra Groth, Sebastian Wild
-
Patent number: 12211147Abstract: The invention relates to a system and computer-implemented method for enabling correction of a segmentation of an anatomical structure in 3D image data. The segmentation may be provided by a mesh which is applied to the 3D image data to segment the anatomical structure. The correction may for example involve a user directly or indirectly selecting a mesh part, such as a mesh point, that needs to be corrected. The behaviour of the correction, e.g., in terms of direction, radius/neighbourhood or strength, may then be dependent on the mesh normal direction, and in some embodiments, on a difference between the mesh normal direction and the orientation of the viewing plane.Type: GrantFiled: December 21, 2020Date of Patent: January 28, 2025Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Alexandra Groth, Frank Michael Weber, Jochen Peters, Rolf Jürgen Weese
-
Publication number: 20250014188Abstract: According to an aspect, there is provided a computer implemented method for boundary detection of an object of interest in an image (200), the method comprising: for a volume of the image corresponding to a portion of a three-dimensional. 3D, mesh, representing the object of interest, predicting, by a regression network, at least one predicted distance from the portion of the 3D mesh to a boundary of the object of interest in the image, the at least one predicted distance corresponding to a class (202); and determining a distance of the portion of the 3D mesh to the boundary based on at least one probability of the volume corresponding to a class and the at least one predicted distance (204).Type: ApplicationFiled: November 15, 2022Publication date: January 9, 2025Inventors: IRINA WAECHTER-STEHLE, NICK FLÄSCHNER, ALEXANDRA GROTH, ROLF JÜRGEN WEESE
-
Publication number: 20240404066Abstract: A system and method for segmenting an anatomical structure in ultrasound imaging data. First ultrasound imaging data of a first region, which includes the anatomical structure, is acquired at a high resolution. Second ultrasound imaging data of a second region, which includes a region neighboring the first region, is acquired at a low resolution. The first and second ultrasound imaging data are processed to segment the anatomical structure.Type: ApplicationFiled: September 20, 2022Publication date: December 5, 2024Inventors: Frank Michael Weber, Faik Can Meral, Irina Waechter-Stehle, Francois Guy Gerard Marie Vignon, Tanja Lossau, Man M. Nguyen, Sebastian Wild, Jason Richard Yu, André Goossen, Alexandra Groth
-
Publication number: 20240362847Abstract: According to an aspect, there is provided a computer-implemented method of operating a visual data delivery system.Type: ApplicationFiled: July 15, 2022Publication date: October 31, 2024Inventors: Frank Michael Weber, Alexandra Groth, Harald Greiner, Jonathan Thomas Sutton, Balasundar Raju, Shyam Bharat, Peter Bingley
-
Patent number: 12131525Abstract: Multi-task deep learning method for a neural network for automatic pathology detection, comprising the steps: receiving first image data (I) for a first image recognition task; receiving (S2) second image data (V) for a second image recognition task; wherein the first image data (I) is of a first datatype and the second image data (V) is of a second datatype, different from the first datatype; determining (S3) first labeled image data (IL) by labeling the first image data (I) and determining second synthesized labeled image data (ISL) by synthesizing and labeling the second image data (V); training (S4) the neural network based on the received first image data (I), the received second image data (V), the determined first labeled image data (IL) and the determined second labeled synthesized image data (ISL); wherein the first image recognition task and the second image recognition task relate to a same anatomic region where the respective image data is taken from and/or relate to a same pathology to be recogniType: GrantFiled: June 25, 2020Date of Patent: October 29, 2024Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Alexandra Groth, Axel Saalbach, Ivo Matteo Baltruschat, Jens Von Berg, Michael Grass
-
Publication number: 20240282461Abstract: A mechanism for generating information usable for identifying a risk of arrhythmia. A plurality of heart models are constructed from medical imaging data of a subject's heart. each heart model being defined by a set of different values for one or more modifiable properties. The modifiable properties are those used in the generation of the heart model or in the definition of the heart model, and influence or affect simulation results using the heart model. Each heart model undergoes a plurality of simulations, each simulation being a simulation of a response of the heart model to a (simulated) stimulation of electricity at a different pacing location of the heart. Output data is generated containing indicators of all simulation results.Type: ApplicationFiled: July 11, 2022Publication date: August 22, 2024Inventors: ROLF JÜRGEN WEESE, IRINA WAECHTER-STEHLE, ALEXANDRA GROTH, MATTHIJS JOSEPH MARIA CLUITMANS
-
Publication number: 20240127432Abstract: A system and method for achieving more accurate results when applying an image processing task to a series of medical images of a patient, without significantly increasing processing resource. The proposed system and method is based on receiving a plurality of image sequences of a particular anatomical region, each capturing cyclical movement of an anatomical object. Each image sequence is supplied to a classifier module which employs use of one or more machine learning algorithms to derive at least one score for each image sequence indicative of predicted success or quality of a result of the image processing task if applied to the given image series. This permits an assessment to be made in advance of which of the plurality of image series is most likely to result in the best (e.g. highest quality, or greatest amount of information) results from the image processing task.Type: ApplicationFiled: January 24, 2022Publication date: April 18, 2024Inventors: Alexandra Groth, Tanja Lossau, Irina Waechter-Stehle, Frank Michael Weber, Jochen Peters, Sebastian Wild, Arne Ewald, Andre Goossen
-
Patent number: 11861839Abstract: A system and computer-implemented method are provided for preprocessing medical image data for machine learning. Image data is accessed which comprises an anatomical structure. The anatomical structure in the image data is segmented to obtain a segmentation of the anatomical structure as a delineated part of the image data. A grid is assigned to the delineated part of the image data, the grid representing a partitioning of an exterior and interior of the type of anatomical structure using grid lines, wherein said assigning comprises adapting the grid to fit the segmentation of the anatomical structure in the image data. A machine learning algorithm is then provided with an addressing to the image data in the delineated part on the basis of coordinates in the assigned grid. In some embodiments, the image data of the anatomical structure may be resampled using the assigned grid.Type: GrantFiled: May 8, 2019Date of Patent: January 2, 2024Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Rolf Jürgen Weese, Alexandra Groth, Tom Brosch, Jochen Peters
-
Patent number: 11830197Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.Type: GrantFiled: June 15, 2022Date of Patent: November 28, 2023Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Rolf Jürgen Weese, Alexandra Groth, Jochen Peters
-
Patent number: 11769599Abstract: A system and method are provided for use in evaluating a clinical guideline which is represented in a machine readable version by a decision tree comprising at least one node and a decision rule associated with the node. The decision rule comprises at least one variable representing a biomedical quantity. The biomedical quantity is extracted from the patient data using an ontology which defines concepts and their relationships in a medical domain of the clinical guideline and which thereby relates the variable of the decision rule to the patient data. If said extraction is not possible, a view of the patient data is presented to the user to enable the user to determine the biomedical quantity from the view. Advantageously, the user is assisted in evaluating the clinical guideline even when it is not possible to automatically extract the biomedical quantity from the patient data.Type: GrantFiled: June 27, 2017Date of Patent: September 26, 2023Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Tilman Wekel, Alexandra Groth, Rolf Jürgen Weese
-
Patent number: 11593691Abstract: An information retrieval system (IPS). The system comprises an input interface (IN) for receiving a query related to an object of interest. A concept mapper (CM) is configured to map the query to one or more associated concept entries of a hierarchic graph data structure (ONTO). The entries in said structure encode linguistic descriptors of components of a model (GM) for said object (OB). A metric-mapper (MM) is configured to map the query to one or more metric relationship descriptors. A geo-mapper (GEO) is configured to map said concept entries against the geometric model linked to the hierarchic graph data structure to obtain spatio-numerical data associated with said linguistic descriptors. A metric component (MTC) is configured to compute one or more metric or spatial relationships between said object components based on the spatio-numerical data and the one or more metric relationship descriptors.Type: GrantFiled: June 30, 2017Date of Patent: February 28, 2023Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Rolf Jurgen Weese, Alexandra Groth, Tilman Wekel, Vincent Maurice Andre Auvray, Raoul Florent, Romane Isabelle Marie-Bernard Gauriau
-
Publication number: 20230011809Abstract: The invention relates to a system and computer-implemented method for enabling correction of a segmentation of an anatomical structure in 3D image data. The segmentation may be provided by a mesh which is applied to the 3D image data to segment the anatomical structure. The correction may for example involve a user directly or indirectly selecting a mesh part, such as a mesh point, that needs to be corrected. The behaviour of the correction, e.g., in terms of direction, radius/neighbourhood or strength, may then be dependent on the mesh normal direction, and in some embodiments, on a difference between the mesh normal direction and the orientation of the viewing plane.Type: ApplicationFiled: December 21, 2020Publication date: January 12, 2023Inventors: ALEXANDRA GROTH, FRANK MICHAEL WEBER, JOCHEN PETERS, ROLF JÜRGEN WEESE
-
Patent number: 11468567Abstract: A system and method are provided for display of medical image data, with the display of the medical image data being determined on the basis of schematic image data of a schematic representation of an anatomical structure. The schematic representation may provide a particular view of the anatomical structure. The type of anatomical structure and the view of the anatomical structure provided by the schematic representation may be determined based on one or more image features in the schematic image data. The view may be characterized as a geometrically-defined perspective at which the anatomical structure is shown in the schematic representation. An output image may be generated showing the anatomical structure in the medical image data in accordance with said determined geometrically-defined perspective. A user may thus be provided with a display of medical image data which is easier to interpret having considered said schematic representation.Type: GrantFiled: February 25, 2019Date of Patent: October 11, 2022Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Alexandra Groth, Axel Saalbach, Rolf Jürgen Weese
-
Publication number: 20220319160Abstract: Multi-task deep learning method for a neural network for automatic pathology detection, comprising the steps: receiving first image data (I) for a first image recognition task; receiving (S2) second image data (V) for a second image recognition task; wherein the first image data (I) is of a first datatype and the second image data (V) is of a second datatype, different from the first datatype; determining (S3) first labeled image data (IL) by labeling the first image data (I) and determining second synthesized labeled image data (ISL) by synthesizing and labeling the second image data (V); training (S4) the neural network based on the received first image data (I), the received second image data (V), the determined first labeled image data (IL) and the determined second labeled synthesized image data (ISL); wherein the first image recognition task and the second image recognition task relate to a same anatomic region where the respective image data is taken from and/or relate to a same pathology to be recogniType: ApplicationFiled: June 25, 2020Publication date: October 6, 2022Inventors: ALEXANDRA GROTH, AXEL SAALBACH, IVO MATTEO BALTRUSCHAT, JENS VON BERG, MICHAEL GRASS
-
Publication number: 20220319010Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.Type: ApplicationFiled: June 15, 2022Publication date: October 6, 2022Inventors: Rolf Jürgen WEESE, Alexandra GROTH, Jochen PETERS
-
Publication number: 20220240910Abstract: A system (SYS) for supporting a medical procedure, comprising an interface (IN) for receiving at least one medical input signal that describes a state of a target anatomy. A signal analyzer (SA) is configured to analyze the medical input signal to determine a time window for deployment of a cardio-vascular device (CL) to be deployed by a deployment.Type: ApplicationFiled: July 28, 2020Publication date: August 4, 2022Inventors: Irina WAECHTER-STEHLE, Rolf Jürgen WEESE, Alexandra GROTH, Dirk SCHAEFER, Arne EWALD, Sven KROENKE
-
Patent number: 11393099Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.Type: GrantFiled: March 2, 2018Date of Patent: July 19, 2022Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Rolf Jürgen Weese, Alexandra Groth, Jochen Peters
-
Publication number: 20220071599Abstract: An ultrasound control unit (12) is for configuring visualization of ultrasound data using in use a display unit. The control unit is adapted to acquire ultrasound image data and to automatically control visualization of the most relevant parts and views the data, based on current levels of a number of different monitored physiological parameters. In particular, responsively to one of the physiological parameters entering or leaving a pre-defined range of values (e.g. representative of an alert or normal condition respective for the patient), the control unit determines a most appropriate anatomical region within the image data for representing the changed physiological parameter, and a most useful visualization mode (e.g. view) for presenting or showing that anatomical region within the image data. One or more display frames are generated which show the anatomical region visualized in accordance with the selected visualization mode.Type: ApplicationFiled: November 15, 2019Publication date: March 10, 2022Inventors: Jonathan Thomas SUTTON, Peter BINGLEY, Shyam BHARAT, Alexandra GROTH, Frank Michael WEBER, Harald GREINER, Balasundar Iyyavu RAJU