Patents by Inventor Alexandra Ros

Alexandra Ros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068965
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani CRUZ VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Publication number: 20240012002
    Abstract: Described herein are systems and methods for a microfluidic immunoassay for in situ mass spectrometry analysis of intracellular protein biomarkers in tissue. In some embodiments, the tissue may comprise human brain tissue. In some embodiments, the protein biomarkers may comprise A? species comprising monomers and oligomers of A?1-42, A?1-40, A?1-39, A?2-43, or combinations thereof. In some embodiments, the systems and methods may comprise laser capture microdissection (LCM) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 11, 2024
    Inventors: Alexandra Ros, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Todd Sandrin, Paul Coleman
  • Patent number: 11867644
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 9, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Sebastian Quintana
  • Publication number: 20230242412
    Abstract: Synthesizing upconverting nanoparticles includes heating a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the upconverting nanoparticles. Core-shell upconverting nanoparticles are synthesized by combining the upconverting nanoparticles with a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer to yield a nanoparticle mixture, heating the nanoparticle mixture in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the core-shell upconverting nanoparticles.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 3, 2023
    Inventors: Ana Egatz-Gomez, Alexandra Ros
  • Publication number: 20230243765
    Abstract: A single-piece hybrid droplet generator and nozzle component for serial crystallography. The single-piece hybrid droplet generator component including an internally-formed droplet-generation channel, an internally-formed sample channel, a nozzle, and a pair of electrode chambers. The droplet-generation channel extends from a first fluid inlet opening to the nozzle. The sample channel extends from a second fluid inlet opening to the droplet-generation channel and joins the droplet-generation channel at a junction. The nozzle is configured to eject a stream of segmented aqueous droplets in a carrier fluid from the droplet-generation channel through a nozzle opening of the single-piece component. The pair of electrode chambers are positioned adjacent to the droplet-generation channel near the junction between the droplet-generation channel and the sample channel.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 3, 2023
    Inventors: Alexandra Ros, Daihyun Kim, Diandra Doppler, Jorvani Cruz Villarreal, Richard Kirian, Reza Nazari, Sahir Gandhi
  • Patent number: 11649173
    Abstract: Synthesizing upconverting nanoparticles includes heating a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the upconverting nanoparticles. Core-shell upconverting nanoparticles are synthesized by combining the upconverting nanoparticles with a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer to yield a nanoparticle mixture, heating the nanoparticle mixture in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the core-shell upconverting nanoparticles.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 16, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Ana Egatz-Gomez, Alexandra Ros
  • Patent number: 11624718
    Abstract: A single-piece hybrid droplet generator and nozzle component for serial crystallography. The single-piece hybrid droplet generator component including an internally-formed droplet-generation channel, an internally-formed sample channel, a nozzle, and a pair of electrode chambers. The droplet-generation channel extends from a first fluid inlet opening to the nozzle. The sample channel extends from a second fluid inlet opening to the droplet-generation channel and joins the droplet-generation channel at a junction. The nozzle is configured to eject a stream of segmented aqueous droplets in a carrier fluid from the droplet-generation channel through a nozzle opening of the single-piece component. The pair of electrode chambers are positioned adjacent to the droplet-generation channel near the junction between the droplet-generation channel and the sample channel.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: April 11, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Diandra Doppler, Jorvani Cruz Villarreal, Richard Kirian, Reza Nazari, Sahir Gandhi
  • Patent number: 11485632
    Abstract: A microfluidic device for use in a serial crystallography apparatus includes a modular 3D-printed nozzle having an inlet, an outlet, and a first snap engagement feature. The microfluidic device further includes a modular 3D-printed fiber holder having an outlet and a second snap engagement feature. The first snap engagement feature is configured to engage the second snap engagement feature to removably couple the nozzle to the fiber holder. The outlet of the fiber holder is aligned with the inlet of the nozzle when the first snap engagement feature is coupled to the second snap engagement feature.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: November 1, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, John Spence, Diandra Doppler, Garrett Nelson, Richard Kirian, Reza Nazari, Ana Egatz-Gomez, Mukul Sonker, Mohammad Rabbani
  • Publication number: 20220332583
    Abstract: Systems & methods for sorting single-walled carbon nanotubes (SWNTs) using an iDEP-based sorting device. The device includes an inlet channel with a constriction and the inlet channel splits into multiple different channels after the constriction—the multiple channels includes a center channel and at least one side channel. A sample is introduced into the iDEP sorting device containing a plurality of SWNTs of different lengths suspended in a fluid. An electrical field is applied to the sample between a first electrode in the center channel and a second electrodes at a proximal end of the inlet channel. The applied electrical field causes longer SWNTs to move towards the side channels while the shorter SWNTs move towards the center channel. Accordingly, a first plurality of shorter SWNTs is then collected from the center channel and a second plurality of longer SWNTs is collected from the at least one side channel.
    Type: Application
    Filed: April 15, 2022
    Publication date: October 20, 2022
    Inventors: Alexandra Ros, Mohammad Towshif Rabbani, Christoph Schmidt
  • Patent number: 11318487
    Abstract: Systems and methods for performing serial crystallography by providing an aqueous suspension of a crystal sample to a T-junction at a first flow rate and providing an immiscible oil fluid to the T-junction at a second flow rate. The aqueous suspension and the oil are combined at the T-junction to produce a co-flow output fluid including a parallel co-flow of the aqueous suspension and the oil in the same output channel. The co-flow output fluid is ejected as a jet stream through a nozzle and the sample flow rate in the crystal sample in the jet stream is adjusted by adjusting the first flow rate of the aqueous suspension and the second flow rate of the oil. By combining the aqueous sample and the oil in this manner, the output of the jet stream can be regulated for compatibility with X-ray free electron laser serial crystallography.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: May 3, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Diandra Doppler, Richard Kirian, Reza Nazari
  • Publication number: 20220112079
    Abstract: A microfluidic device for use in a serial crystallography apparatus includes a nozzle having an inlet, an outlet, and a first snap engagement feature. The microfluidic device further includes a fiber holder having an outlet and a second snap engagement feature. The first snap engagement feature is configured to engage the second snap engagement feature to removably couple the nozzle to the fiber holder. The outlet of the fiber holder is aligned with the inlet of the nozzle when the first snap engagement feature is coupled to the second snap engagement feature.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Inventors: Alexandra Ros, John Spence, Diandra Doppler, Garrett Nelson, Richard Kirian, Reza Nazari, Ana Egatz-Gomez, Mukul Sonker, Mohammad Rabbani
  • Publication number: 20220072542
    Abstract: Sub-micrometer bioparticles are separated by size in a microfluidic channel utilizing a ratchet migration mechanism. A structure within the microfluidic channel includes an array of micro-posts arranged in laterally shifted rows. Reservoirs are disposed at each end of the microfluidic channel. A biased AC potential is applied across the channel via electrodes immersed into fluid in each of the reservoirs to induce a non-uniform electric field through the microfluidic channel. The applied potential comprises a first waveform with a first frequency that induces electro-kinetic flow of sub-micrometer bioparticles in the microfluidic channel, and an intermittent superimposed second waveform with a higher frequency. The second waveform selectively induces a dielectrophoretic trapping force to selectively impart ratchet migration based on particle size for separating the sub-micrometer bioparticles by size in the microfluidic channel.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 10, 2022
    Inventors: Alexandra Ros, Daihyun Kim, Jinghui Luo
  • Patent number: 11173487
    Abstract: Sub-micrometer bioparticles are separated by size in a microfluidic channel utilizing a ratchet migration mechanism. A structure within the microfluidic channel includes an array of micro-posts arranged in laterally shifted rows. Reservoirs are disposed at each end of the microfluidic channel. A biased AC potential is applied across the channel via electrodes immersed into fluid in each of the reservoirs to induce a non-uniform electric field through the microfluidic channel. The applied potential comprises a first waveform with a first frequency that induces electro-kinetic flow of sub-micrometer bioparticles in the microfluidic channel, and an intermittent superimposed second waveform with a higher frequency. The second waveform selectively induces a dielectrophoretic trapping force to selectively impart ratchet migration based on particle size for separating the sub-micrometer bioparticles by size in the microfluidic channel.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 16, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Jinghui Luo
  • Publication number: 20210332294
    Abstract: Synthesizing upconverting nanoparticles includes heating a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the upconverting nanoparticles. Core-shell upconverting nanoparticles are synthesized by combining the upconverting nanoparticles with a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer to yield a nanoparticle mixture, heating the nanoparticle mixture in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the core-shell upconverting nanoparticles.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 28, 2021
    Inventors: Ana Egatz-Gomez, Alexandra Ros
  • Publication number: 20210302334
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: April 1, 2021
    Publication date: September 30, 2021
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani CRUZ VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Patent number: 10969350
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 6, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STAT
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Sebastian Quintana
  • Publication number: 20200360944
    Abstract: Systems and methods for performing serial crystallography by providing an aqueous suspension of a crystal sample to a T-junction at a first flow rate and providing an immiscible oil fluid to the T-junction at a second flow rate. The aqueous suspension and the oil are combined at the T-junction to produce a co-flow output fluid including a parallel co-flow of the aqueous suspension and the oil in the same output channel. The co-flow output fluid is ejected as a jet stream through a nozzle and the sample flow rate in the crystal sample in the jet stream is adjusted by adjusting the first flow rate of the aqueous suspension and the second flow rate of the oil. By combining the aqueous sample and the oil in this manner, the output of the jet stream can be regulated for compatibility with X-ray free electron laser serial crystallography.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Diandra Doppler, Richard Kirian, Reza Nazari
  • Publication number: 20200363348
    Abstract: A single-piece hybrid droplet generator and nozzle component for serial crystallography. The single-piece hybrid droplet generator component including an internally-formed droplet-generation channel, an internally-formed sample channel, a nozzle, and a pair of electrode chambers. The droplet-generation channel extends from a first fluid inlet opening to the nozzle. The sample channel extends from a second fluid inlet opening to the droplet-generation channel and joins the droplet-generation channel at a junction. The nozzle is configured to eject a stream of segmented aqueous droplets in a carrier fluid from the droplet-generation channel through a nozzle opening of the single-piece component. The pair of electrode chambers are positioned adjacent to the droplet-generation channel near the junction between the droplet-generation channel and the sample channel.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Inventors: Alexandra Ros, Daihyun Kim, Diandra Doppler, Jorvani Cruz Villarreal, Richard Kirian, Reza Nazari, Sahir Gandhi
  • Patent number: 10722889
    Abstract: A microfluidic apparatus, systems and methods for microfluidic crystallization based on gradient mixing. In one embodiment, the apparatus includes (a) a first layer, (b) a plurality of first channels and a plurality of vacuum chambers both arranged in the first layer, where the plurality of vacuum chambers are each coupled to at least one of the first channels, (c) a membrane having first and second surfaces, where the first surface of the membrane is coupled to the first layer, (d) a second layer coupled to the second surface of the membrane, (e) a plurality of wells and a plurality of second channels both arranged in the second layer, where the wells are each coupled to at least one of the plurality of second channels and (f) a plurality of barrier walls each disposed in the plurality of second channels and arranged opposite to one of the plurality of vacuum chambers.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: July 28, 2020
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Bahige G. Abdallah
  • Publication number: 20200141886
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: May 22, 2018
    Publication date: May 7, 2020
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA