Patents by Inventor Alexandra Wright

Alexandra Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240014904
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Publication number: 20230343655
    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.
    Type: Application
    Filed: July 3, 2023
    Publication date: October 26, 2023
    Inventors: Roy Edward Meade, Anatol Khilo, Forrest Sedgwick, Alexandra Wright
  • Patent number: 11799554
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Grant
    Filed: July 16, 2022
    Date of Patent: October 24, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Patent number: 11777633
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: October 3, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11694935
    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 4, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Anatol Khilo, Forrest Sedgwick, Alexandra Wright
  • Patent number: 11563506
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 24, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Publication number: 20220407606
    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 22, 2022
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
  • Publication number: 20220360336
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Application
    Filed: July 16, 2022
    Publication date: November 10, 2022
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Patent number: 11424830
    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: August 23, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
  • Patent number: 11405125
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 2, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11394465
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 19, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Publication number: 20220224433
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Application
    Filed: January 24, 2022
    Publication date: July 14, 2022
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Publication number: 20220171142
    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.
    Type: Application
    Filed: February 14, 2022
    Publication date: June 2, 2022
    Inventors: Alexandra Wright, Mark Wade, Chen Sun, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Roy Edward Meade, Derek Van Orden
  • Patent number: 11249260
    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: February 15, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Alexandra Wright, Mark Wade, Chen Sun, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Roy Edward Meade, Derek Van Orden
  • Publication number: 20220045780
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Application
    Filed: August 24, 2021
    Publication date: February 10, 2022
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11233596
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 25, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Patent number: 11101912
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 24, 2021
    Assignee: Ayar Labs, Inc.
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Publication number: 20210124107
    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 29, 2021
    Inventors: Roy Edward Meade, Anatol Khilo, Forrest Sedgwick, Alexandra Wright
  • Publication number: 20200403703
    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
  • Publication number: 20200382215
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport