Patents by Inventor Alexandre Caprio

Alexandre Caprio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250135073
    Abstract: Systems, methods, and devices having improved conformal properties for biomedical signal measurement are disclosed. A device can have a first polymer substrate coupled to a conductive layer forming a conductive trace electrically coupled to a conductive pad exposed via an opening. The device can have a second polymer substrate forming a first cavity between the first polymer substrate and the second polymer substrate. The device can have a first inlet portion that receives a fluid that expands the first cavity causing the device to conform to an anatomical structure. The structure can be an atrium, such as the left atrium, of the heart of a patient. The device can conform to the walls of the tissue structure, and the conductive pad exposed via the opening can detect a signal from the wall of the tissue structure. The signal can be provided to an external measurement device for processing.
    Type: Application
    Filed: June 5, 2024
    Publication date: May 1, 2025
    Applicant: CORNELL UNIVERSITY
    Inventors: Nazanin Farokhnia, Alexandre Caprio, Varun Umesh Kashyap, Subhi Al' Aref, Bobak Mosadegh, James K. Min, Simon Dunham
  • Patent number: 12285260
    Abstract: Methods for fabricating flexible/stretchable circuits can include identifying one or more regions of a printed circuit board (PCB) for selectively removing insulation material. The PCB can include one or more electrically conductive structures arranged on an insulation layer. The method can include applying, within each region of the one or more regions, thermal energy via a heat source to a surface of the PCB within the region such that insulation material of the insulation layer is removed from the region while a portion of the insulation layer beneath the one or more electrically conductive structures is maintained. The flexible/stretchable circuit can be laminated on a soft actuator to form a soft robotic device.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 29, 2025
    Assignee: Cornell University
    Inventors: Simon Dunham, Bobak Mosadegh, Varun Umesh Kashyap, Tejas Doshi, Alexandre Caprio
  • Patent number: 12005159
    Abstract: Systems, methods, and devices having improved conformal properties for biomedical signal measurement are disclosed. A device can have a first polymer substrate coupled to a conductive layer forming a conductive trace electrically coupled to a conductive pad exposed via an opening. The device can have a second polymer substrate forming a first cavity between the first polymer substrate and the second polymer substrate. The device can have a first inlet portion that receives a fluid that expands the first cavity causing the device to conform to an anatomical structure. The structure can be an atrium, such as the left atrium, of the heart of a patient. The device can conform to the walls of the tissue structure, and the conductive pad exposed via the opening can detect a signal from the wall of the tissue structure. The signal can be provided to an external measurement device for processing.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: June 11, 2024
    Assignee: CORNELL UNIVERSITY
    Inventors: Nazanin Farokhnia, Alexandre Caprio, Varun Umesh Kashyap, Subhi Al' Aref, Bobak Mosadegh, James K. Min, Simon Dunham
  • Publication number: 20230146045
    Abstract: Methods for fabricating flexible/stretchable circuits can include identifying one or more regions of a printed circuit board (PCB) for selectively removing insulation material. The PCB can include one or more electrically conductive structures arranged on an insulation layer. The method can include applying, within each region of the one or more regions, thermal energy via a heat source to a surface of the PCB within the region such that insulation material of the insulation layer is removed from the region while a portion of the insulation layer beneath the one or more electrically conductive structures is maintained. The flexible/stretchable circuit can be laminated on a soft actuator to form a soft robotic device.
    Type: Application
    Filed: April 23, 2021
    Publication date: May 11, 2023
    Applicant: Cornell University
    Inventors: Simon Dunham, Bobak Mosadegh, Varun Kashyap, Tejas Doshi, Alexandre Caprio
  • Publication number: 20220387675
    Abstract: Systems, methods, and devices having improved conformal properties for biomedical signal measurement are disclosed. A device can have a first polymer substrate coupled to a conductive layer forming a conductive trace electrically coupled to a conductive pad exposed via an opening. The device can have a second polymer substrate forming a first cavity between the first polymer substrate and the second polymer substrate. The device can have a first inlet portion that receives a fluid that expands the first cavity causing the device to conform to an anatomical structure. The structure can be an atrium, such as the left atrium, of the heart of a patient. The device can conform to the walls of the tissue structure, and the conductive pad exposed via the opening can detect a signal from the wall of the tissue structure. The signal can be provided to an external measurement device for processing.
    Type: Application
    Filed: November 6, 2020
    Publication date: December 8, 2022
    Applicant: CORNELL UNIVERSITY
    Inventors: Nazanin Farokhnia, Alexandre Caprio, Varun Kashyap, Subhi Al' Aref, Bobak Mosadegh, James K. Min, Simon Dunham