Patents by Inventor Alexandre Depraete
Alexandre Depraete has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11448279Abstract: Damper apparatus for use with vehicle torque converters are disclosed. A disclosed damper assembly for a vehicle torque converter includes a first portion operatively coupled to a clutch of the vehicle torque converter and configured to receive an engine torque from the clutch based on a state of the clutch. The damper assembly also includes a second portion and a hub rotatably coupled to a turbine of the vehicle torque converter. The damper assembly also includes a gear train including a ring gear coupled to the first portion, a planet gear rotatably coupled to the second portion, and a sun gear coupled to the hub. The damper assembly also includes a primary damping element positioned in a cavity formed by the second portion. Rotation of the first portion relative to the second portion compresses and decompresses the primary damping element to dampen a torsional vibration associated with the engine torque.Type: GrantFiled: November 1, 2019Date of Patent: September 20, 2022Assignee: VALEO KAPEC CO., LTD.Inventors: Xuexian Yin, Alexandre Depraete
-
Patent number: 11339861Abstract: A method of making a turbine assembly for a hydrokinetic torque converter includes providing a first turbine component including a polymeric first turbine shell element and first turbine blades connected to the first turbine shell element, providing a second turbine component including a second turbine shell element and second turbine blades connected to the second turbine shell element, and connecting the first turbine shell element to the second turbine shell element to collectively provide a turbine shell of the turbine assembly and fixedly secure the first and second turbine components to one another in a coaxial relationship about the rotational axis. The connecting involves welding and/or adhesive bonding the first turbine shell element to the second turbine shell element. A turbine assembly, a hydrokinetic torque converter, and a method of making a hydrokinetic torque converter are also provided.Type: GrantFiled: December 14, 2020Date of Patent: May 24, 2022Assignee: VALEO KAPEC CO., LTD.Inventors: Alexandre Depraete, Gyubong Jeon, Xuexian Yin, Subramanian Jeyabalan
-
Patent number: 11105405Abstract: A hydrokinetic torque coupling device for coupling together driving and driven shafts, comprises a casing, impeller and turbine wheels, a torsional vibration damper, a turbine hub non-rotatably connected to the turbine wheel, and first and second vibration absorbers. Each of the first and second vibration absorbers is one of a dynamic absorber and a pendulum oscillator. The turbine hub is non-rotatably coupled to a driven member of the torsional vibration damper. The first vibration absorber is mounted to the turbine hub and the second vibration absorber is mounted to one of the turbine hub and the casing. The first vibration absorber and the second vibration absorber are tuned to address different orders of vibrations. The dynamic absorber includes an inertial member and a connecting plate coupled to the inertial member. The pendulum oscillator includes a support member and flyweights configured to oscillate relative to the support member.Type: GrantFiled: August 22, 2019Date of Patent: August 31, 2021Assignee: VALEO KAPEC CO., LTD.Inventor: Alexandre Depraete
-
Patent number: 10865864Abstract: A method of making a turbine assembly for a hydrokinetic torque converter includes providing a first turbine component including a polymeric first turbine shell element and first turbine blades connected to the first turbine shell element, providing a second turbine component including a second turbine shell element and second turbine blades connected to the second turbine shell element, and connecting the first turbine shell element to the second turbine shell element to collectively provide a turbine shell of the turbine assembly and fixedly secure the first and second turbine components to one another in a coaxial relationship about the rotational axis. The connecting involves welding and/or adhesive bonding the first turbine shell element to the second turbine shell element. A turbine assembly, a hydrokinetic torque converter, and a method of making a hydrokinetic torque converter are also provided.Type: GrantFiled: March 28, 2017Date of Patent: December 15, 2020Assignee: Valeo EmbrayagesInventors: Alexandre Depraete, Gyubong Jeon, Xuexian Yin, Subramanian Jeyabalan
-
Patent number: 10774909Abstract: A turbine wheel for a hydrokinetic torque converter. The turbine wheel is rotatable about a rotational axis and comprises a substantially annular turbine shell member coaxial with the rotational axis, and a plurality of turbine blade members axially extending from the turbine shell member. The turbine wheel is a single-piece component such that the turbine blade members are unitarily formed with the turbine shell member. The turbine wheel (22) is made by an additive manufacturing process from a polymeric material.Type: GrantFiled: March 28, 2018Date of Patent: September 15, 2020Assignee: Valeo Kapec Co., Ltd.Inventors: Subramanian Jeyabalan, Alexandre Depraete, Jean-François Bisson, David Salvadori, Adrien Peduzzi
-
Publication number: 20200141465Abstract: Damper apparatus for use with vehicle torque converters are disclosed. A disclosed damper assembly for a vehicle torque converter includes a first portion operatively coupled to a clutch of the vehicle torque converter and configured to receive an engine torque from the clutch based on a state of the clutch. The damper assembly also includes a second portion and a hub rotatably coupled to a turbine of the vehicle torque converter. The damper assembly also includes a gear train including a ring gear coupled to the first portion, a planet gear rotatably coupled to the second portion, and a sun gear coupled to the hub. The damper assembly also includes a primary damping element positioned in a cavity formed by the second portion. Rotation of the first portion relative to the second portion compresses and decompresses the primary damping element to dampen a torsional vibration associated with the engine torque.Type: ApplicationFiled: November 1, 2019Publication date: May 7, 2020Applicant: VALEO KAPEC CO., LTD.Inventors: Xuexian Yin, Alexandre Depraete
-
Patent number: 10428924Abstract: A turbine assembly for a hydrokinetic torque converter. The turbine assembly is rotatable about a rotational axis and comprises a first turbine component coaxial with the rotational axis, a second turbine component formed separately from and non-moveably secured to the first turbine component coaxially therewith, and a plurality of grommets. The first turbine component has a plurality of first turbine blade members integrally formed therewith. One of the first and second turbine components has a substantially annular mounting portion provided with a plurality of mounting holes. Each of the grommets is mounted in one of the mounting holes through the mounting portion.Type: GrantFiled: November 17, 2016Date of Patent: October 1, 2019Assignee: Valeo EmbrayagesInventors: Xuexian Yin, Alexandre Depraete
-
Patent number: 10393248Abstract: A hydrokinetic torque coupling device includes a casing having opposite sidewalls and an outer wall extending between and connecting the opposite sidewalls, an impeller coaxial aligned with the rotational axis, a piston engagement member extending substantially radially inward from and non-moveable relative to the outer wall of the casing, and a turbine-piston coaxially aligned with and hydrodynamically drivable by the impeller. The turbine-piston includes a turbine-piston shell having a turbine-piston flange with an engagement surface that is movable axially toward and away from an engagement surface of the piston engagement member to position the hydrokinetic torque coupling device into and out of a lockup mode in which the turbine-piston is mechanically locked to and non-rotatable relative to the piston engagement member.Type: GrantFiled: April 24, 2017Date of Patent: August 27, 2019Assignee: Valeo EmbrayagesInventors: Alexandre Depraete, Michel Bacher, Gyubong Jeon, Zane Yang
-
Patent number: 10393247Abstract: A hydrokinetic torque coupling device for coupling together driving and driven shafts, comprises a casing, impeller and turbine wheels, a torsional vibration damper, a turbine hub non-rotatably connected to the turbine wheel, and first and second vibration absorbers. Each of the first and second vibration absorbers is one of a dynamic absorber and a pendulum oscillator. The turbine hub is non-rotatably coupled to a driven member of the torsional vibration damper. The first vibration absorber is mounted to the turbine hub and the second vibration absorber is mounted to one of the turbine hub and the casing. The first vibration absorber and the second vibration absorber are tuned to address different orders of vibrations. The dynamic absorber includes an inertial member and a connecting plate coupled to the inertial member. The pendulum oscillator includes a support member and flyweights configured to oscillate relative to the support member.Type: GrantFiled: May 23, 2016Date of Patent: August 27, 2019Assignee: Valeo EmbrayagesInventor: Alexandre Depraete
-
Patent number: 10281020Abstract: A hydrokinetic torque converter comprises a casing having a locking surface, impeller and turbine wheels, a one-way turbine clutch, and a torsional vibration damper. The one-way turbine clutch includes an outer ring non-rotatably connected to the turbine shell, an inner and engagement components permitting rotational movement of the outer ring relative to the inner ring in one circumferential direction only. The turbine wheel is non-rotatably coupled to the outer ring of the one-way turbine clutch. The torsional vibration damper comprises an input member, a plurality of circumferentially acting elastic members and an output member elastically coupled to the input member trough the elastic members. The output member of the torsional vibration damper is non-rotatably attached to the turbine wheel.Type: GrantFiled: December 21, 2016Date of Patent: May 7, 2019Assignee: Valeo EmbrayagesInventors: Alexandre Depraete, Subramanian Jeyabalan
-
Patent number: 10274081Abstract: A stator assembly of a hydrokinetic torque converter includes a stator rotatable about an axis and having a radially outer stator belt, an annular stator hub disposed radially within the radially outer stator belt, at least one fixed post extending radially outwardly between the stator hub and the stator belt and fixed thereto so as to non-moveably secure the stator belt to the stator hub, and a plurality of pivotable stator blades extending radially outwardly between the stator hub and the stator belt and configured to pivot relative to both the stator hub and the stator belt in the direction orthogonal to the rotational axis.Type: GrantFiled: March 31, 2017Date of Patent: April 30, 2019Assignee: Valeo EmbrayagesInventor: Alexandre Depraete
-
Patent number: 10274041Abstract: A hydrodynamic coupling arrangement (1), comprising an impeller (6) linkable to a drive shaft, a turbine (7) linkable to a driven shaft via a hub (11) and able to hydrodynamically coupled with the impeller (6), a lockup clutch (20) able to short-circuited the hydrodynamically coupling between the impeller (6) and the turbine (7), a torsional vibration damper arrangement (13;14,15) located between the lockup clutch (20) and the hub (11), said torsional vibration damper arrangement comprising an input element (16;17,47,24), an output element (17; 25,33,32) and a plurality of elastic elements (22;26) disposed between the input element and the output element, the output element of the torsional vibration damper arrangement forms a part of the hub, wherein the coupling arrangement comprises an absorber device (29) being linked in rotation to the hub, said absorber device comprising a unique resonance frequency.Type: GrantFiled: March 11, 2015Date of Patent: April 30, 2019Assignee: Valeo EmbrayagesInventors: Alexandre Depraete, Xuexian Yin
-
Patent number: 10274066Abstract: A hydrokinetic torque converter comprises a stator assembly and a turbine assembly rotatable about a rotational axis. The stator assembly comprises a stator comprising an annular stator hub coaxial to the rotational axis, an annular turbine core ring coaxial to the rotational axis, and a plurality of stator blades integral with and interconnecting the stator hub and the turbine core ring. The turbine assembly comprises a first turbine component coaxial with the rotational axis, and a second turbine component non-moveably secured to the turbine component coaxially therewith. The first turbine component is formed separately from the second turbine component. The first turbine component has a plurality of first turbine blade members integrally formed therewith.Type: GrantFiled: May 31, 2016Date of Patent: April 30, 2019Assignee: Valeo EmbrayagesInventors: Subramanian Jeyabalan, Alexandre Depraete
-
Patent number: 10267397Abstract: A turbine assembly for a hydrokinetic torque converter. The turbine assembly is rotatable about a rotational axis and hydrokinetic torque converter and comprises a first turbine component coaxial with the rotational axis, and a second turbine component non-moveably secured to the turbine component coaxially therewith. The first turbine component is formed separately from the second turbine component. The first turbine component has a plurality of first turbine blade members integrally formed therewith.Type: GrantFiled: February 23, 2016Date of Patent: April 23, 2019Assignee: Valeo EmbrayagesInventor: Alexandre Depraete
-
Patent number: 10234007Abstract: A hydrokinetic torque coupling device comprising an impeller wheel (2) able to hydrokinetically drive a turbine wheel (3) into rotation, with the impeller wheel (2) being rotationally coupled to a cover (5), with the turbine wheel (3) being able to be axially moved between an engaged position and a disengaged position, wherein it comprises an elastically deformable stress overtaking member (25) axially inserted between the turbine wheel (3) and a part (12) of the cover (5), with the stress overtaking member (25) being able to limit the axial displacement of the turbine wheel (3) towards the above-mentioned part (12) of the cover (5), opposite the turbine wheel (3).Type: GrantFiled: May 23, 2016Date of Patent: March 19, 2019Assignee: Valeo EmbrayagesInventor: Alexandre Depraete
-
Patent number: 10221930Abstract: A hydrokinetic torque converter for coupling driving and driven shafts. The torque converter comprises an impeller wheel rotatable around a rotational axis, a turbine wheel rotatable coaxially aligned with the impeller wheel, a stator situated axially between the impeller wheel and the turbine wheel, and a one-way turbine clutch permitting rotational movement of the turbine wheel in one circumferential direction only. The one-way turbine clutch includes an outer ring non-rotatably connected to the turbine shell, an inner ring disposed radially within the outer ring and a plurality of engagement components positioned radially between the outer and the inner rings. The turbine wheel includes a turbine shell and at least one coupling member extending axially outwardly from the turbine shell in the direction toward the one-way turbine clutch. The at least one coupling member of the turbine wheel is non-rotatably coupled to the outer ring of the one-way turbine clutch.Type: GrantFiled: December 21, 2016Date of Patent: March 5, 2019Assignee: Valeo EmbrayagesInventors: Alexandre Depraete, Subramanian Jeyabalan
-
Patent number: 10180182Abstract: A hydrokinetic torque converter including a secondary piston for purposes of enhancing operation of the lock-up feature, and the method of operating such a converter. The secondary piston moves axially behind the turbine-piston to urge respective lock-up clutch friction surfaces into phased engagement. In an initial phase of engagement, friction surfaces between the secondary piston and turbine-piston engage to begin the reduction of relative rotary motion between the converter impeller and turbine-piston. This initial phase of slowing relative movement between the impeller and turbine-piston reduces pressure within the torus and the associated fluid forces separating the friction surfaces of the lock-up clutch. The secondary piston also slows and eliminates fluid flow from within the torus past the lock-up clutch and further reduces engagement resistance of the lock-up clutch owing to the lessening fluid pressure and flow.Type: GrantFiled: March 2, 2017Date of Patent: January 15, 2019Assignee: VALEO EMBRAYAGESInventors: Patrick Durham, Xuexian Yin, Gyubong Jeon, Alexandre Depraete, Neil Godin
-
Patent number: 10161492Abstract: A hydrokinetic torque coupling device for a motor vehicle, comprises a torque input element (11) intended to be coupled to a crankshaft (1), an impeller wheel (3) non-moveably coupled to the torque input element (11) and configured to hydrokinetically drive a turbine wheel (4), a torque output element (8) intended to be coupled to a transmission input shaft (2), a clutch (10) configured to rotationally couple the torque input element (11) and the torque output element (8) in an engaged position through a damping device (18, 22) and to rotationally uncouple the torque input element (11) and the torque output element (8) in a disengaged position. The damping device (18, 22) is configured to act against the rotation of the torque input element (11) relative to the torque output element (8), in the engaged position of the clutch (10).Type: GrantFiled: October 2, 2015Date of Patent: December 25, 2018Assignee: Valeo EmbrayagesInventor: Alexandre Depraete
-
Patent number: 10119605Abstract: A hydrokinetic torque coupling device includes an impeller, a casing having a first engagement surface, a turbine-piston hydrodynamically drivable by the impeller, and a biasing device. The turbine-piston is hydrodynamically drivable by the impeller and includes a turbine-piston shell having a second engagement surface facing the first engagement surface. The turbine-piston is axially displaceable relative to the impeller between a hydrodynamic transmission mode and a lockup mode. The biasing device is configured to exert an axial load against the turbine-piston to urge the turbine-piston axially away from the lockup mode and towards the hydrodynamic transmission mode. The axial load exerted by the biasing device decreases as the turbine-piston moves axially towards the lockup mode and increases as the turbine-piston moves axially away from the lockup mode.Type: GrantFiled: June 1, 2017Date of Patent: November 6, 2018Assignee: Valeo EmbrayagesInventors: Alexandre Depraete, David Werthman
-
Patent number: 10113624Abstract: A torque-coupling device for coupling driving and driven shafts. The torque-coupling device comprises a casing having a locking surface, a torque converter, a locking piston having an engagement surface axially movable to and from the locking surface of the casing and a torsional vibration damper. The torsional vibration damper comprises a torque input member and a unitary radially elastic output member elastically coupled to the torque input member. The torque input member includes a radially oriented first retainer plate and at least one supporting member mounted thereto. The output member includes an output hub and an elastic leaf configured to elastically engage the supporting member upon rotation of the first retainer plate with respect to the output member. The output hub is configured for directly and non-rotatably engaging a driven shaft. The locking piston is non-rotatably connected to the torque input member of the torsional vibration damper.Type: GrantFiled: November 17, 2016Date of Patent: October 30, 2018Assignee: Valeo EmbrayagesInventors: Xuexian Yin, Alexandre Depraete, Patrick Durham