Patents by Inventor Alexandre Freundlich

Alexandre Freundlich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9627564
    Abstract: An optoelectronic device comprising: a first conductive layer, a second conductive layer, an active layer between the first conductive layer and the second conductive layer, wherein the active layer comprises a submicrometer size structure of hexagonal type crystals of an element or alloy of elements selected from the carbon group.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 18, 2017
    Assignees: Electricite de France, Centre National de la Recherche Scientifique (CNRS), University of Houston
    Inventors: Jean-Francois Guillemoles, Par Olsson, Julien Vidal, Alexandre Freundlich
  • Patent number: 9450123
    Abstract: A design of a quantum well region that allows faster and more efficient carrier collection in quantum well solar cells. It is shown that for a quantum well material system displaying a negligible valence band offset, the conduction band confinement energies and barrier thicknesses can be designed to favor a sequential thermionic promotion and resonant tunneling of electrons to the conduction band continuum resulting in faster carrier collection rates than for a conventional design. An evaluation of the proposed design in the context of devices incorporating GaAs/GaAsN quantum wells shows a collection of all photo-generated carriers within several to tenths of ps (10?12 s) from deep quantum wells rather than several ns, as it is the case for conventional designs. The incorporation of the proposed design in single and multijunction solar cells is evaluated with efficiency enhancements.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: September 20, 2016
    Assignee: The University of Houston System
    Inventors: Alexandre Freundlich, Andenet Alemu
  • Patent number: 9431556
    Abstract: A dilute nitrogen alloy of InNxSb1-x epilayers strained to an epitaxial substrate useful for Long Wavelength Infrared (LWIR) Focal Plane Arrays, and method of fabricating. Strained materials of composition InNxSb1-x exhibiting increased Auger lifetimes and improved absorption properties.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: August 30, 2016
    Assignee: THE UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Alexandre Freundlich, Lekhnath Bhusal
  • Publication number: 20130186458
    Abstract: A design of a quantum well region that allows faster and more efficient carrier collection in quantum well solar cells. It is shown that for a quantum well material system displaying a negligible valence band offset, the conduction band confinement energies and barrier thicknesses can be designed to favor a sequential thermionic promotion and resonant tunneling of electrons to the conduction band continuum resulting in faster carrier collection rates than for a conventional design. An evaluation of the proposed design in the context of devices incorporating GaAs/GaAsN quantum wells shows a collection of all photo-generated carriers within several to tenths of ps (10?12 s) from deep quantum wells rather than several ns, as it is the case for conventional designs. The incorporation of the proposed design in single and multijunction solar cells is evaluated with efficiency enhancements.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 25, 2013
    Applicant: The University of Houston System
    Inventors: Alexandre Freundlich, Andenet Alemu
  • Publication number: 20130168725
    Abstract: An optoelectronic device comprising: a first conductive layer, a second conductive layer, an active layer between the first conductive layer and the second conductive layer, wherein the active layer comprises a submicrometer size structure of hexagonal type crystals of an element or alloy of elements selected from the carbon group.
    Type: Application
    Filed: September 9, 2010
    Publication date: July 4, 2013
    Applicants: ELECTRICITE DE FRANCE, UNIVERSITY OF HOUSTON, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Jean-Francois Guillemoles, Par Olsson, Julien Vidal, Alexandre Freundlich
  • Publication number: 20120174971
    Abstract: Multi-junction solar cell devices which incorporate dilute nitrides to include a sub-cell in the 1 eV range in a conventional design for a solar cell. Sub-cells may be inserted within the intrinsic region of a conventional GaAs p-i-n solar cell either as a 3rd junction (1 eV) in a (Al)InGaP (1.9 eV)/GaAs(1.42 eV)/MQW(1 eV)/Ge(0.66 eV) quadruple junction device or as a triple junction configuration with a 1.1 eV MQW between GaInP (1.8 eV) and Ge(0.66 eV).
    Type: Application
    Filed: July 29, 2011
    Publication date: July 12, 2012
    Applicant: UNIVERSITY OF HOUSTON
    Inventors: Alexandre Freundlich, Andenet Alemu
  • Publication number: 20120074462
    Abstract: A dilute nitrogen alloy of InNxSb1-x epilayers strained to an epitaxial substrate useful for Long Wavelength Infrared (LWIR) Focal Plane Arrays, and method of fabricating. Strained materials of composition InNxSb1-x exhibiting increased Auger lifetimes and improved absorption properties.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 29, 2012
    Applicant: The University of Houston System
    Inventors: Alexandre Freundlich, Lekhnath Bhusal
  • Patent number: 6372980
    Abstract: A two-terminal tandem solar cell is provided. The inclusion of thin (few nm-thick) narrow band-gap InGaAs quantum wells in the intrinsic (i) region of the conventional p-i-n GaAs solar cell extends the photo-absorption of the conventional GaInP/GaAs tandem cell toward the infrared. Beginning-of-Life efficiencies in excess of 30% are predicted. Modeling data indicate end-of-life efficiency of these cells will exceed 25% AM0.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: April 16, 2002
    Assignee: University of Houston
    Inventor: Alexandre Freundlich
  • Patent number: 6147296
    Abstract: A two-terminal tandem solar cell is provided. The inclusion of thin (few nm-thick) narrow band-gap InGaAs quantum wells in the intrinsic (i) region of the conventional p-i-n GaAs solar cell extends the photo-absorption of the conventional GaInP/GaAs tandem cell toward the infrared. Beginning-of-Life efficiencies in excess of 30% are predicted. Modeling data indicate end-of-life efficiency of these cells will exceed 25% AM0.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: November 14, 2000
    Assignee: University of Houston
    Inventor: Alexandre Freundlich
  • Patent number: 5851310
    Abstract: An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output.A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: December 22, 1998
    Assignee: University of Houston
    Inventors: Alexandre Freundlich, Philippe Renaud, Mauro Francisco Vilela, Abdelhak Bensaoula
  • Patent number: 5800630
    Abstract: A monolithic, tandem photovoltaic device is provided having an indium phosphide tunnel junction lattice-matched to adjoining subcells and having high peak current densities and low electrical resistance. A method is provided for relatively low-temperature epitaxial growth of a tunnel junction and a subcell over the tunnel junction at temperatures which leave intact the desirable characteristics of the tunnel junction.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: September 1, 1998
    Assignee: University of Houston
    Inventors: Mauro F. Vilela, Abdelhak Bensaoula, Alexandre Freundlich, Philippe Renaud, Nasr-Eddine Medelci
  • Patent number: 5407491
    Abstract: A monolithic, tandem photovoltaic device is provided having an indium gallium arsenide tunnel junction lattice-matched to adjoining subcells and having high peak current densities and low electrical resistance. A method is provided for relatively low-temperature epitaxial growth of a subcell over the tunnel junction at temperatures which leave intact the desirable characteristics of the tunnel junction.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: April 18, 1995
    Assignee: University of Houston
    Inventors: Alexandre Freundlich, Mauro F. Vilela, Abdelhak Bensaoula, Alex Ignatiev