Patents by Inventor Alexandre J. Farcy

Alexandre J. Farcy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11900108
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghali, Erdinc Ozturk, Martin G. Dixon, Sean P. Mirkes, Bret L. Toll, Maxim Loktyukhin, Mark C. Davis, Alexandre J. Farcy
  • Publication number: 20220107806
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Application
    Filed: August 30, 2021
    Publication date: April 7, 2022
    Inventors: Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghali, Erdinc Ozturk, Martin G. Dixon, Sean P. Mirkes, Bret L. Toll, Maxim Loktyukhin, Mark C. Davis, Alexandre J. Farcy
  • Patent number: 11106461
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 31, 2021
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghali, Erdinc Ozturk, Martin G. Dixon, Sean P. Mirkes, Bret L. Toll, Maxim Loktyukhin, Mark C. Davis, Alexandre J. Farcy
  • Patent number: 10649774
    Abstract: A method in one aspect may include receiving a multiply instruction. The multiply instruction may indicate a first source operand and a second source operand. A product of the first and second source operands may be stored in one or more destination operands indicated by the multiply instruction. Execution of the multiply instruction may complete without writing a carry flag. Other methods are also disclosed, as are apparatus, systems, and instructions on machine-readable medium.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 12, 2020
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Wajdi K. Feghali, Erdinc Ozturk, Gilbert M. Wolrich, Martin G. Dixon, Mark C. Davis, Sean P. Mirkes, Alexandre J. Farcy, Bret L. Toll, Maxim Loktyukhin
  • Patent number: 10409612
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Patent number: 10409611
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Publication number: 20180321940
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Application
    Filed: March 29, 2018
    Publication date: November 8, 2018
    Applicant: lntel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghali, Erdinc Ozturk, Martin G. Dixon, Sean P. Mirkes, Bret L. Toll, Maxim Loktyukhin, Mark C. Davis, Alexandre J. Farcy
  • Publication number: 20180136936
    Abstract: A method in one aspect may include receiving a multiply instruction. The multiply instruction may indicate a first source operand and a second source operand. A product of the first and second source operands may be stored in one or more destination operands indicated by the multiply instruction. Execution of the multiply instruction may complete without writing a carry flag. Other methods are also disclosed, as are apparatus, systems, and instructions on machine-readable medium.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Applicant: Intel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Wajdi K. Feghali, Erdinc Ozturk, Gilbert M. Wolrich, Martin G. Dixon, Mark C. Davis, Sean P. Mirkes, Alexandre J. Farcy, Bret L. Toll, Maxim Loktyukhin
  • Patent number: 9940131
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 10, 2018
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D Guilford, Gilbert M Wolrich, Wajdi K Feghali, Erdinc Ozturk, Martin G Dixon, Sean Mirkes, Bret L Toll, Maxim Loktyukhin, Mark C Davis, Alexandre J Farcy
  • Patent number: 9940130
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 10, 2018
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D Guilford, Gilbert M Wolrich, Wajdi K Feghali, Erdinc Ozturk, Martin G Dixon, Sean Mirkes, Bret L Toll, Maxim Loktyukhin, Mark C Davis, Alexandre J Farcy
  • Patent number: 9916160
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: March 13, 2018
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K Feghali, Erdinc Ozturk, Martin G Dixon, Sean Mirkes, Bret L Toll, Maxim Loktyukhin, Mark C Davis, Alexandre J Farcy
  • Publication number: 20160246606
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: August 25, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijakumar Kadgi
  • Publication number: 20160239304
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: August 18, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Publication number: 20160210177
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: July 21, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Publication number: 20160154648
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: June 2, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Patent number: 9354875
    Abstract: An enhanced loop streaming detection mechanism is provided in a processor to reduce power consumption. The processor includes a decoder to decode instructions in a loop into micro-operations, and a loop streaming detector to detect the presence of the loop in the micro-operations. The processor also includes a loop characteristic tracker unit to identify hardware components downstream from the decoder that are not to be used by the micro-operations in the loop, and to disable the identified hardware components. The processor also includes execution circuitry to execute the micro-operations in the loop with the identified hardware components disabled.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 31, 2016
    Assignee: Intel Corporation
    Inventors: Matthew C. Merten, Justin M. Deinlein, Yury N. Ilin, Alexandre J. Farcy, Tong Li, Srikanth T. Srinivasan
  • Patent number: 9348591
    Abstract: This disclosure includes tracking of in-use states of cache lines to improve throughput of pipelines and thus increase performance of processors. Access data for a number of sets of instructions stored in an instruction cache may be tracked using an in-use array in a first array until the data for one or more of those sets reach a threshold condition. A second array may then be used as the in-use array to track the sets of instructions after a micro-operation is inserted into the pipeline. When the micro-operation retires from the pipeline, the first array may be cleared. The process may repeat after the second array reaches the threshold condition. During the tracking, an in-use state for an instruction line may be detected by inspecting a corresponding bit in each of the arrays. Additional arrays may also be used to track the in-use state.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: May 24, 2016
    Assignee: Intel Corporation
    Inventors: Ilhyun Kim, Chen Koren, Alexandre J. Farcy, Robert L. Hinton, Choon Wei Khor, Lihu Rappoport
  • Publication number: 20160132334
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: May 12, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Publication number: 20160132337
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: May 12, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi
  • Publication number: 20160132336
    Abstract: An apparatus and method is described herein for providing robust speculative code section abort control mechanisms. Hardware is able to track speculative code region abort events, conditions, and/or scenarios, such as an explicit abort instruction, a data conflict, a speculative timer expiration, a disallowed instruction attribute or type, etc. And hardware, firmware, software, or a combination thereof makes an abort determination based on the tracked abort events. As an example, hardware may make an initial abort determination based on one or more predefined events or choose to pass the event information up to a firmware or software handler to make such an abort determination. Upon determining an abort of a speculative code region is to be performed, hardware, firmware, software, or a combination thereof performs the abort, which may include following a fallback path specified by hardware or software.
    Type: Application
    Filed: December 26, 2015
    Publication date: May 12, 2016
    Inventors: Martin G. Dixon, Ravi Rajwar, Konrad K. Lai, Robert S. Chappell, Rajesh S. Parthasarathy, Alexandre J. Farcy, Ilhyun Kim, Prakash Math, Matthew Merten, Vijaykumar Kadgi