Patents by Inventor Alexandre Mondot

Alexandre Mondot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8759174
    Abstract: A method of fabricating a device, including the steps of forming a first silicon oxide layer within a first region of the device and a second silicon oxide layer within a second region of the device, implanting doping ions of a first type into the first region, implanting doping ions of a second type into the second region, and etching the first and second regions for a determined duration such that the first silicon oxide layer is removed and at least a part of the second silicon oxide layer remains.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 24, 2014
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics S.A., NXP B.V.
    Inventors: Markus Müller, Alexandre Mondot, Pascal Besson
  • Publication number: 20130240999
    Abstract: A method for selective deposition of Si or SiGe on a Si or SiGe surface exploits differences in physico-chemical surface behavior according to a difference in doping of first and second surface regions. By providing at least one first surface region with a Boron doping of a suitable concentration range and exposing the substrate surface to a cleaning and passivating ambient atmosphere in a prebake step at a temperature lower or equal than 800° C., a subsequent deposition step of Si or SiGe will not lead to a layer deposition in the first surface region. This effect is used for selective deposition of Si or SiGe in the second surface region, which is not doped with Boron in the suitable concentration range, or doped with another dopant, or not doped. Several devices are, thus, provided. The method thus saves a usual photolithography sequence required for selective deposition of Si or SiGe in the second surface region according to the prior art.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 19, 2013
    Applicants: NXP B.V., STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Alexandre Mondot, Markus Mueller, Thomas Kormann
  • Patent number: 8481378
    Abstract: A method for selective deposition of Si or SiGe on a Si or SiGe surface exploits differences in physico-chemical surface behavior according to a difference in doping of first and second surface regions. By providing at least one first surface region with a Boron doping of a suitable concentration range and exposing the substrate surface to a cleaning and passivating ambient atmosphere in a prebake at a temperature lower or equal to 800° C., a subsequent deposition step will prevent deposition in the first surface region. This allows selective deposition in the second surface region, which is not doped with the Boron (or doped with another dopant or not doped). Several devices are, thus, provided. The method saves a usual photolithography sequence, which according to prior art is required for selective deposition of Si or SiGe in the second surface region.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: July 9, 2013
    Assignees: STMicroelectronics (Crolles 2) SAS, NXP B.V.
    Inventors: Alexandre Mondot, Markus Gerhard Andreas Muller, Thomas Kormann
  • Publication number: 20120282747
    Abstract: A method for selective deposition of Si or SiGe on a Si or SiGe surface exploits differences in physico-chemical surface behavior according to a difference in doping of first and second surface regions. By providing at least one first surface region with a Boron doping of a suitable concentration range and exposing the substrate surface to a cleaning and passivating ambient atmosphere in a prebake at a temperature lower or equal to 800° C., a subsequent deposition step will prevent deposition in the first surface region. This allows selective deposition in the second surface region, which is not doped with the Boron (or doped with another dopant or not doped). Several devices are, thus, provided. The method saves a usual photolithography sequence, which according to prior art is required for selective deposition of Si or SiGe in the second surface region.
    Type: Application
    Filed: October 24, 2011
    Publication date: November 8, 2012
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Alexandre Mondot, Markus Gerhard Andreas Muller, Thomas Kormann
  • Patent number: 8080452
    Abstract: The invention relates to a method for selective deposition of Si or SiGe on a Si or SiGe surface. The method exploits differences in physico-chemical surface behavior according to a difference in doping of first and second surface regions. By providing at least one first surface region with a Boron doping of a suitable concentration range and exposing the substrate surface to a cleaning and passivating ambient atmosphere in a prebake step at a temperature lower or equal than 800° C., a subsequent deposition step of Si or SiGe will not lead to a layer deposition in the first surface region. This effect is used for selective deposition of Si or SiGe in the second surface region, which is not doped with Boron in the suitable concentration range, or doped with another dopant, or not doped. The method thus saves a usual photolithography sequence required for selective deposition of Si or SiGe in the second surface region according to the prior art.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 20, 2011
    Assignees: NXP, B.V., STMicroelectronics (Crolles 2) SAS
    Inventors: Alexandre Mondot, Markus Gerhard Andreas Muller, Thomas Kormann
  • Publication number: 20110006370
    Abstract: The invention relates to a method for selective deposition of Si or SiGe on a Si or SiGe surface. The method exploits differences in physico-chemical surface behaviour according to a difference in doping of first and second surface regions. By providing at least one first surface region with a Boron doping of a suitable concentration range and exposing the substrate surface to a cleaning and passivating ambient atmosphere in a prebake step at a temperature lower or equal than 800° C., a subsequent deposition step of Si or SiGe will not lead to a layer deposition in the first surface region. This effect is used for selective deposition of Si or SiGe in the second surface region, which is not doped with Boron in the suitable concentration range, or doped with another dopant, or not doped. The method thus saves a usual photolithography sequence required for selective deposition of Si or SiGe in the second surface region according to the prior art.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 13, 2011
    Applicants: NXP, B.V., ST MICROELECTRONICS (CROLLES 2) SAS
    Inventors: Alexandre Mondot, Markus Gerhard Andreas Muller, Thomas Kormann
  • Publication number: 20100283107
    Abstract: The integrated circuit comprises at least one MOS transistor (T) including a gate (GR) having a bottom part in contact with the gate oxide. Said bottom part has an inhomogeneous work function (WFB, WFA) along the length of the gate between the source and drain regions, the value of the work function being greater at the extremities of the gate than in the centre of the gate. The gate comprises a first material (A) in the centre and a second material (B) in the remaining part. Such configuration is obtained for example by silicidation.
    Type: Application
    Filed: December 7, 2006
    Publication date: November 11, 2010
    Inventors: Markus Muller, Alexandre Mondot, Arnaud Pouydebasque
  • Publication number: 20100041189
    Abstract: A method of fabricating a device, including the steps of forming a first silicon oxide layer within a first region of the device and a second silicon oxide layer within a second region of the device, implanting doping ions of a first type into the first region, implanting doping ions of a second type into the second region, and etching the first and second regions for a determined duration such that the first silicon oxide layer is removed and at least a part of the second silicon oxide layer remains.
    Type: Application
    Filed: September 15, 2009
    Publication date: February 18, 2010
    Applicants: STMicroelectronics (Crolles) 2 SAS, STMicroelectronics S.A., NXP B.V.
    Inventors: Markus Müller, Alexandre Mondot, Pascal Besson