Patents by Inventor Alexandros T. Demos

Alexandros T. Demos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8216861
    Abstract: Methods for the repair of damaged low k films are provided. Damage to the low k films occurs during processing of the film such as during etching, ashing, and planarization. The processing of the low k film causes water to store in the pores of the film and further causes hydrophilic compounds to form in the low k film structure. Repair processes incorporating ultraviolet (UV) radiation and carbon-containing compounds remove the water from the pores and further remove the hydrophilic compounds from the low k film structure.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Thomas Nowak, Bo Xie, Alexandros T. Demos
  • Publication number: 20120156890
    Abstract: A method and apparatus for forming low-k dielectric layers that include air gaps is provided. In one embodiment, a method of processing a substrate is provided. The method comprises disposing a substrate within a processing region, reacting an organosilicon compound, with an oxidizing gas, and a porogen providing precursor in the presence of a plasma to deposit a porogen containing low-k dielectric layer comprising silicon, oxygen, and carbon on the substrate, depositing a porous dielectric capping layer comprising silicon, oxygen and carbon on the porogen containing low-k dielectric layer, and ultraviolet (UV) curing the porogen containing low-k dielectric layer and the porous dielectric capping layer to remove at least a portion of the porogen from the porogen containing low-k dielectric layer through the porous dielectric capping layer to convert the porogen containing low-k dielectric layer to a porous low-k dielectric layer having air gaps.
    Type: Application
    Filed: November 28, 2011
    Publication date: June 21, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: KANG SUB YIM, Jin XU, Sure NGO, Alexandros T. DEMOS
  • Publication number: 20120132618
    Abstract: A method and apparatus for providing a uniform UV radiation irradiance profile across a surface of a substrate is provided. In one embodiment, a substrate processing tool includes a processing chamber defining a processing region, a substrate support for supporting a substrate within the processing region, an ultraviolet (UV) radiation source spaced apart from the substrate support and configured to transmit ultraviolet radiation toward the substrate positioned on the substrate support, and a light transmissive window positioned between the UV radiation source and the substrate support, the light transmissive window having an optical film layer coated thereon. In one example, the optical film layer has a non-uniform thickness profile in a radial direction, wherein a thickness of the optical film layer at the peripheral area of the light transmissive window is relatively thicker than at the center region of the optical film layer.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 31, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SANJEEV BALUJA, Juan Carlos Rocha-Alvarez, Alexandros T. Demos
  • Publication number: 20120121823
    Abstract: An improved method for depositing an ultra low dielectric constant film stack is provided. Embodiments of the invention minimize k (dielectric constant) impact from initial stages of depositing the ultra low dielectric constant film stack by reducing a thickness of an oxide adhesion layer in the ultra low dielectric film stack (<2 k?) to about or less than 200 ?, thereby lowering the thickness non-uniformity of the film stack to less than 2%. The improved process deposits the oxide adhesion layer and the bulk layer in the ultra low dielectric film stack at lower deposition rate and lower plasma density in combination with higher total flow rate, resulting in better packing/ordering of the co-deposited species during film deposition which causes higher mechanical strength and lower porosity. The improved adhesion layer provides high adhesion energy for better adhesion with ultra low dielectric constant films to underlying barrier/liner layers.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MAHENDRA CHHABRA, Kang Sub Yim, Alexandros T. Demos
  • Publication number: 20120090691
    Abstract: Embodiments of the invention generally provide apparatuses and methods for controlling the gas flow profile within a processing chamber. In one embodiment, a processing tool includes an ultraviolet processing chamber defining a processing region, a substrate support, a window disposed between a UV radiation source and the substrate support, and a transparent showerhead disposed within the processing region between the window and the substrate support and having one or more transparent showerhead passages between upper and lower processing regions. The processing tool also includes a gas distribution ring having one or more gas distribution ring passages between a gas distribution ring inner channel and the upper processing region and a gas outlet ring positioned below the gas distribution ring, the gas outlet ring having one or more gas outlet passages between a gas outlet ring inner channel within the gas outlet ring and the lower processing region.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 19, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sanjeev Baluja, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Thomas Nowak, Jianhua Zhou
  • Patent number: 8058183
    Abstract: A method for restoring the dielectric constant of a low dielectric constant film is described. A porous dielectric layer having a plurality of pores is formed on a substrate. The plurality of pores is then filled with an additive to provide a plugged porous dielectric layer. Finally, the additive is removed from the plurality of pores.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 15, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, May Yu, Alexandros T. Demos, Mehul Naik
  • Publication number: 20110206857
    Abstract: Methods for depositing a low dielectric constant layer on a substrate are provided. In one embodiment, the method includes introducing one or more organosilicon compounds into a chamber, wherein the one or more organosilicon compounds comprise a silicon atom and a porogen component bonded to the silicon atom, reacting the one or more organosilicon compounds in the presence of RF power to deposit a low dielectric constant layer on a substrate in the chamber, and post-treating the low dielectric constant layer to substantially remove the porogen component from the low dielectric constant layer. Optionally, an inert carrier gas, an oxidizing gas, or both may be introduced into the processing chamber with the one or more organosilicon compounds. The post-treatment process may be an ultraviolet radiation cure of the deposited material. The UV cure process may be used concurrently or serially with a thermal or e-beam curing process.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 25, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Kang Sub Yim, Alexandros T. Demos
  • Publication number: 20110204492
    Abstract: Embodiments of the present invention pertain to the formation of microelectronic structures. Low k dielectric materials need to exhibit a dielectric constant of less than about 2.6 for the next technology node of 32 nm. The present invention enables the formation of semiconductor devices which make use of such low k dielectric materials while providing an improved flexural and shear strength integrity of the microelectronic structure as a whole.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: Bo Xie, Alexandros T. Demos, Daemian Raj, Sure Ngo, Kang Sub Yim
  • Patent number: 7998536
    Abstract: A method for depositing a low dielectric constant film on a substrate is provided. The low dielectric constant film is deposited by a process comprising reacting one or more organosilicon compounds and a porogen and then post-treating the film to create pores in the film. The one or more organosilicon compounds include compounds that have the general structure Si—CX—Si or —Si—O—(CH2)n—O—Si—. Low dielectric constant films provided herein include films that include Si—CX—Si bonds both before and after the post-treatment of the films. The low dielectric constant films have good mechanical and adhesion properties, and a desirable dielectric constant.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: August 16, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Alexandros T. Demos
  • Patent number: 7989033
    Abstract: A method for depositing a low dielectric constant film on a substrate is provided. The low dielectric constant film is deposited by a process comprising reacting one or more organosilicon compounds and a porogen and then post-treating the film to create pores in the film. The one or more organosilicon compounds include compounds that have the general structure Si—CX—Si or —Si—O—(CH2)n—O—Si—. Low dielectric constant films provided herein include films that include Si—CX—Si bonds both before and after the post-treatment of the films. The low dielectric constant films have good mechanical and adhesion properties, and a desirable dielectric constant.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: August 2, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Alexandros T. Demos
  • Patent number: 7947611
    Abstract: A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 24, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Kelvin Chan, Nagarajan Rajagopalan, Visweswaren Sivaramakrishnan
  • Publication number: 20110104891
    Abstract: A method and apparatus for generating air gaps in a dielectric material of an interconnect structure. One embodiment provides a method for forming a semiconductor structure comprising depositing a first dielectric layer on a substrate, forming trenches in the first dielectric layer, filling the trenches with a conductive material, planarizing the conductive material to expose the first dielectric layer, depositing a dielectric barrier film on the conductive material and exposed first dielectric layer, depositing a hard mask layer over the dielectric barrier film, forming a pattern in the dielectric barrier film and the hard mask layer to expose selected regions of the substrate, oxidizing at least a portion of the first dielectric layer in the selected region of the substrate, removing oxidized portion of the first dielectric layer to form reversed trenches around the conductive material, and forming air gaps in the reversed trenches while depositing a second dielectric material in the reversed trenches.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Inventors: AMIR AL-BAYATI, Alexandros T. Demos, Kang Sub Yim, Mehul Naik, Zhenjiang David Cui, Mihaela Balseanu, Meiyee Maggie Le Shek, Li-Qun Xia
  • Publication number: 20110100394
    Abstract: A method for cleaning a substrate processing chamber, including processing a batch of substrates within a processing chamber defining one or more processing regions. Processing the batch of substrates may be executed in a sub-routine having various sub-steps including processing a substrate from the batch within the processing chamber, removing the substrate from the processing chamber, introducing ozone into the processing chamber, and exposing the chamber to ultraviolet light for less than one minute. The substrate batch processing sub-steps may be repeated until the last substrate in the batch is processed. After processing the last substrate in the batch, the method includes removing the last substrate from the processing chamber, introducing ozone into the processing chamber; and exposing the processing chamber to ultraviolet light for three to fifteen minutes.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 5, 2011
    Inventors: Sang In Yi, Kelvin Chan, Thomas Nowak, Alexandros T. Demos
  • Patent number: 7879683
    Abstract: A method and apparatus for generating air gaps in a dielectric material of an interconnect structure. One embodiment provides a method for forming a semiconductor structure comprising depositing a first dielectric layer on a substrate, forming trenches in the first dielectric layer, filling the trenches with a conductive material, planarizing the conductive material to expose the first dielectric layer, depositing a dielectric barrier film on the conductive material and exposed first dielectric layer, depositing a hard mask layer over the dielectric barrier film, forming a pattern in the dielectric barrier film and the hard mask layer to expose selected regions of the substrate, oxidizing at least a portion of the first dielectric layer in the selected region of the substrate, removing oxidized portion of the first dielectric layer to form reversed trenches around the conductive material, and forming air gaps in the reversed trenches while depositing a second dielectric material in the reversed trenches.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: February 1, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Amir Al-Bayati, Alexandros T. Demos, Kang Sub Yim, Mehul Naik, Zhenjiang “David” Cui, Mihaela Balseanu, Meiyee (Maggie Le) Shek, Li-Qun Xia
  • Patent number: 7790583
    Abstract: One embodiment of the present invention is a method for cleaning an electron beam treatment apparatus that includes: (a) generating an electron beam that energizes a cleaning gas in a chamber of the electron beam treatment apparatus; (b) monitoring an electron beam current; (c) adjusting a pressure of the cleaning gas to maintain the electron beam current at a substantially constant value; and (d) stopping when a predetermined condition has been reached.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Khaled A. Elsheref, Josphine J. Chang, Hichem M'saad
  • Patent number: 7777197
    Abstract: Methods and apparatus for electron beam treatment of a substrate are provided. An electron beam apparatus that includes a vacuum chamber, at least one thermocouple assembly in communication with the vacuum chamber, a heating device in communication with the vacuum chamber, and combinations thereof are provided. In one embodiment, the vacuum chamber comprises an electron source wherein the electron source comprises a cathode connected to a high voltage source, an anode connected to a low voltage source, and a substrate support. In another embodiment, the vacuum chamber comprises a grid located between the anode and the substrate support. In one embodiment the heating device comprises a first parallel light array and a second light array positioned such that the first parallel light array and the second light array intersect. In one embodiment the thermocouple assembly comprises a temperature sensor made of aluminum nitride.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Amir Al-Bayati, Lester A. D'Cruz, Alexandros T. Demos, Dale R. Dubois, Khaled A. Elsheref, Naoyuki Iwasaki, Hichem M'Saad, Juan Carlos Rocha-Alvarez, Ashish Shah, Takashi Shimizu
  • Publication number: 20100151671
    Abstract: Methods are provided for forming a structure that includes an air gap. In one embodiment, a method is provided for forming a damascene structure comprises depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen-containing material, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature definition in the organic layer and the porous low dielectric constant layer, filing the feature definition with a conductive material therein, depositing a mask layer on the organic layer and the conductive material disposed in the feature definition, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive material.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 17, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Alexandros T. Demos, Li-Qun Xia, Bok Hoen Kim, Derek R. Witty, Hichem M'Saad
  • Patent number: 7670924
    Abstract: Methods are provided for forming a structure that includes an air gap. In one embodiment, a method is provided for forming a damascene structure comprises depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen-containing material, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature definition in the organic layer and the porous low dielectric constant layer, filing the feature definition with a conductive material therein, depositing a mask layer on the organic layer and the conductive material disposed in the feature definition, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive material.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 2, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Li-Qun Xia, Bok Hoen Kim, Derek R. Witty, Hichem M'Saad
  • Publication number: 20100018548
    Abstract: A method for cleaning a substrate processing chamber, including processing a batch of substrates within a processing chamber defining one or more processing regions. Processing the batch of substrates may be executed in a sub-routine having various sub-steps including processing a substrate from the batch within the processing chamber, removing the substrate from the processing chamber, introducing ozone into the processing chamber, and exposing the chamber to ultraviolet light for less than one minute. The substrate batch processing sub-steps may be repeated until the last substrate in the batch is processed. After processing the last substrate in the batch, the method includes removing the last substrate from the processing chamber, introducing ozone into the processing chamber; and exposing the processing chamber to ultraviolet light for three to fifteen minutes.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Sang In Yi, Kelvin Chan, Thomas Nowak, Alexandros T. Demos
  • Publication number: 20100015816
    Abstract: A method for processing a substrate is provided, wherein a first organosilicon precursor, a second organosilicon precursor, a porogen, and an oxygen source are provided to a processing chamber. The first organosilicon precursor comprises compounds having generally low carbon content. The second organosilicon precursor comprises compounds having higher carbon content. The porogen comprises hydrocarbon compounds. RF power is applied to deposit a film on the substrate, and the flow rates of the various reactant streams are adjusted to change the carbon content as portions of the film are deposited. In one embodiment, an initial portion of the deposited film has a low carbon content, and is therefore oxide-like, while successive portions have higher carbon content, becoming oxycarbide-like. Another embodiment features no oxide-like initial portion. Post-treating the film generates pores in portions of the film having higher carbon content.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Inventors: Kelvin Chan, Kang Sub Yim, Alexandros T. Demos