Patents by Inventor Alexei Petrov
Alexei Petrov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220045353Abstract: Chemically treating ionically conductive sulfide glass solid electrolyte separators or separator layers can improve performance. In particular, treatment involving chemically etching a surface or surface region of the sulfide glass separator to blunt, lessen or remove edge defects or surface flaws, and/or to enhance surface smoothness is cost effective, reliable and well suited for high production environments compared to physical methods of removing scratches or smoothing surfaces, such as mechanical grinding and polishing.Type: ApplicationFiled: June 4, 2021Publication date: February 10, 2022Applicant: PolyPlus Battery CompanyInventors: Steven J. Visco, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Bruce D. Katz
-
Publication number: 20210320328Abstract: Preparation of anhydrous lithium sulfide (Li2S) purified suitably for applications in advanced batteries, and, in particular, for synthesis of solid electrolytes based on Li2S, including sulfide solid electrolytes of the type that may be described as crystalline (e.g., polycrystalline), amorphous (e.g., glass) and combinations thereof, such as sulfide glass-ceramic solid electrolyte materials.Type: ApplicationFiled: March 16, 2021Publication date: October 14, 2021Applicant: PolyPlus Battery CompanyInventors: Steven J. Visco, Alexei Petrov, Valentina Loginova, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
-
Publication number: 20180309157Abstract: The present invention is directed to protected active metal negative electrodes for use in an electrochemical device such as a rechargeable battery cells, and to novel battery cells incorporating said protected electrodes. In accordance with the invention, the interior of the anode compartment includes, what is termed herein, a reservoir architecture for accommodating liquid anolyte in contact with the active metal electroactive material layer and is spatially engineered to improve service life of the instant electrode, and in particular embodiments to enhance cycle life of a battery cell in which the protected electrode is employed.Type: ApplicationFiled: April 18, 2018Publication date: October 25, 2018Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Alexei Petrov
-
Patent number: 9905860Abstract: A water activated lithium battery cell having a thermal agent component for warming up cell components upon deployment. Also a water-activated battery system that is adapted to operate in and/or on the surface of a waterbody (i.e., a body of water including those which are natural or man made). In various embodiments the battery system comprises an operably breachable hermetic enclosure and at least one lithium battery cell having an open-cathode architecture, the lithium cell disposed inside the hermetic enclosure and therein maintained in an open ionic circuit condition (i.e., an inactive state) throughout battery system storage. Moreover, optionally, a thermal agent may be disposed inside the hermetic enclosure for warming up one or more battery cell components, the agent typically water activated, which is to mean that it (the thermal agent) evolves heat by reacting with water.Type: GrantFiled: June 27, 2014Date of Patent: February 27, 2018Assignee: POLYPLUS BATTERY COMPANYInventors: Steven J. Visco, Lutgard C. De Jonghe, Vitaliy Nimon, Alexei Petrov, Ian Wogan, Yevgeniy S. Nimon, Bruce D. Katz
-
Publication number: 20170365898Abstract: Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.Type: ApplicationFiled: April 27, 2017Publication date: December 21, 2017Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Alexei Petrov, Nikolay Goncharenko
-
Publication number: 20170365853Abstract: Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.Type: ApplicationFiled: April 28, 2017Publication date: December 21, 2017Inventors: Steven J. Visco, Nikolay Goncharenko, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Valentina Loginova
-
Patent number: 9660265Abstract: Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.Type: GrantFiled: March 13, 2015Date of Patent: May 23, 2017Assignee: POLYPLUS BATTERY COMPANYInventors: Steven J. Visco, Nikolay Goncharenko, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Valentina Loginova
-
Patent number: 9660311Abstract: Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.Type: GrantFiled: August 17, 2012Date of Patent: May 23, 2017Assignee: POLYPLUS BATTERY COMPANYInventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Alexei Petrov, Nikolay Goncharenko
-
Publication number: 20160028053Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholytes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.Type: ApplicationFiled: July 28, 2015Publication date: January 28, 2016Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
-
Patent number: 9130198Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholyes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.Type: GrantFiled: February 12, 2013Date of Patent: September 8, 2015Assignee: PolyPlus Battery CompanyInventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard De Jonghe, Bruce D. Katz, Alexei Petrov
-
Publication number: 20150214555Abstract: Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.Type: ApplicationFiled: March 13, 2015Publication date: July 30, 2015Inventors: Steven J. Visco, Nikolay Goncharenko, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Valentina Loginova
-
Publication number: 20150162641Abstract: The present invention is directed to protected active metal negative electrodes for use in an electrochemical device such as a rechargeable battery cells, and to novel battery cells incorporating said protected electrodes. In accordance with the invention, the interior of the anode compartment includes, what is termed herein, a reservoir architecture for accommodating liquid anolyte in contact with the active metal electroactive material layer and is spatially engineered to improve service life of the instant electrode, and in particular embodiments to enhance cycle life of a battery cell in which the protected electrode is employed.Type: ApplicationFiled: December 9, 2014Publication date: June 11, 2015Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Alexei Petrov
-
Publication number: 20150004457Abstract: A water activated lithium battery cell having a thermal agent component for warming up cell components upon deployment. Also a water-activated battery system that is adapted to operate in and/or on the surface of a waterbody (i.e., a body of water including those which are natural or man made). In various embodiments the battery system comprises an operably breachable hermetic enclosure and at least one lithium battery cell having an open-cathode architecture, the lithium cell disposed inside the hermetic enclosure and therein maintained in an open ionic circuit condition (i.e., an inactive state) throughout battery system storage. Moreover, optionally, a thermal agent may be disposed inside the hermetic enclosure for warming up one or more battery cell components, the agent typically water activated, which is to mean that it (the thermal agent) evolves heat by reacting with water.Type: ApplicationFiled: June 27, 2014Publication date: January 1, 2015Inventors: Steven J. Visco, Lutgard C. De Jonghe, Vitaliy Nimon, Alexei Petrov, Ian Wogan, Yevgeniy S. Nimon, Bruce D. Katz
-
Publication number: 20140162108Abstract: Protected anode architectures provide a hermetic enclosure for an active metal (e.g., alkali metal, such as lithium) anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode, and in some aspects catholyte may also comprise dissolved or suspended redox active species and redox active liquids), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping, while allowing for active metal ion transport between the anode and cathode into and out of the anode compartment.Type: ApplicationFiled: February 14, 2014Publication date: June 12, 2014Applicant: PolyPlus Battery CompanyInventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard De Jonghe, Bruce D. Katz, Alexei Petrov
-
Patent number: 8691444Abstract: Protected anode architectures for active metal anodes have a polymer adhesive seal that provides a hermetic enclosure for the active metal of the protected anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping. The architecture is formed by joining the protected anode to an anode container. The polymer adhesive seals provide a hermetic seal at the joint between a surface of the protected anode and the container.Type: GrantFiled: April 16, 2013Date of Patent: April 8, 2014Assignee: PolyPlus Battery CompanyInventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
-
Patent number: 8673477Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.Type: GrantFiled: June 12, 2009Date of Patent: March 18, 2014Assignee: PolyPlus Battery CompanyInventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko, Bruce Katz
-
Patent number: 8658304Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.Type: GrantFiled: October 29, 2012Date of Patent: February 25, 2014Assignee: PolyPlus Battery CompanyInventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko
-
Publication number: 20130302704Abstract: Protected anode architectures for active metal anodes have a polymer adhesive seal that provides a hermetic enclosure for the active metal of the protected anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping. The architecture is formed by joining the protected anode to an anode container. The polymer adhesive seals provide a hermetic seal at the joint between a surface of the protected anode and the container.Type: ApplicationFiled: April 16, 2013Publication date: November 14, 2013Applicant: PolyPlus Battery CompanyInventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
-
Publication number: 20130224593Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholyes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.Type: ApplicationFiled: February 12, 2013Publication date: August 29, 2013Applicant: PolyPlus Battery CompanyInventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard De Jonghe, Bruce D. Katz, Alexei Petrov
-
Patent number: 8455131Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.Type: GrantFiled: June 12, 2009Date of Patent: June 4, 2013Assignee: PolyPlus Battery CompanyInventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko