Patents by Inventor Alexey Kirilin
Alexey Kirilin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240286988Abstract: The present invention relates generally to gas phase processes for producing carboxylic acids or alkyl esters. In one embodiment, a gas phase process for producing a carboxylic acid or an alkyl ester comprises (a) providing a catalyst support comprising deposits of cobalt thiocyanate on at least a portion of the catalyst support; (b) heating the catalyst support to convert the cobalt thiocyanate on the support to cobalt sulfide to form a supported cobalt sulfide catalyst; and (c) reacting alkene gas, steam or an alkanol gas, and a carbon-containing gas in the presence of the supported cobalt sulfide catalyst in a reactor to form a product stream, wherein the carbon-containing gas comprises carbon monoxide or a mixture of carbon monoxide and carbon dioxide, wherein when steam is used as a reactant, the product stream comprises a carboxylic acid, and wherein when alkanol gas is used as a reactant, the product stream comprises an alkyl ester.Type: ApplicationFiled: June 2, 2022Publication date: August 29, 2024Inventors: Alexey Kirilin, Beata A. Kilos, Wen -Sheng Lee, David G. Barton
-
Publication number: 20240228404Abstract: A process for preparing C2 to C4 hydrocarbons includes introducing a feed stream including hydrogen gas and a carbon-containing gas selected from the group consisting of carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream including C2 to C4 hydrocarbons in the reaction zone in the presence of a formed hybrid catalyst. The formed hybrid catalyst includes a metal oxide catalyst component including gallium oxide and zirconia, a microporous catalyst component that is a molecular sieve having 8-MR (Membered Ring) pore openings, and a binder including alumina, zirconia, or both.Type: ApplicationFiled: February 18, 2022Publication date: July 11, 2024Applicant: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Fang Du, Ewa Tocha, Alexey Kirilin, Christopher Ho, David F. Yancey, Davy L. S. Nieskens, Andrzej Malek
-
Patent number: 12030036Abstract: A method for preparing C2 to C5 paraffins includes introducing a feed stream including hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. Converting the feed stream into a product stream including C2 to C5 paraffins in the presence of a hybrid catalyst. The hybrid catalyst includes a microporous catalyst component; and a metal oxide catalyst component selected from (A) a bulk material consisting of gallium oxide, (B) gallium oxide present on a titanium dioxide support material, and (C) a mixture of gallium oxide and at least one promoter present on a support material selected from Group 4 of the IUPAC periodic table of elements.Type: GrantFiled: December 16, 2019Date of Patent: July 9, 2024Assignee: Dow Global Technologies LLCInventors: Alexey Kirilin, Adam Chojecki, Glenn Pollefeyt, Davy L. S. Nieskens, Kyle C. Andrews, Vera P. Santos Castro, Joseph F. DeWilde, David F. Yancey, Andrzej Malek
-
Patent number: 11986799Abstract: A process for preparing C2 to C4 olefins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. The feed stream is converted into a product stream including C2 to C4 olefins in the reaction zone in the presence of the hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component comprising gallium oxide and phase pure zirconia, and a microporous catalyst component.Type: GrantFiled: December 16, 2019Date of Patent: May 21, 2024Assignee: Dow Global Technologies LLLCInventors: Adam Chojecki, Alexey Kirilin, Andrzej Malek, Joseph F. DeWilde, Vera P. Santos Castro, David F. Yancey, Kyle C. Andrews
-
Publication number: 20240132423Abstract: A process for preparing C2 to C4 hydrocarbons includes introducing a feed stream including hydrogen gas and a carbon-containing gas selected from the group consisting of carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream including C2 to C4 hydrocarbons in the reaction zone in the presence of a formed hybrid catalyst. The formed hybrid catalyst includes a metal oxide catalyst component including gallium oxide and zirconia, a microporous catalyst component that is a molecular sieve having 8-MR (Membered Ring) pore openings, and a binder including alumina, zirconia, or both.Type: ApplicationFiled: February 18, 2022Publication date: April 25, 2024Applicant: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Fang Du, Ewa Tocha, Alexey Kirilin, Christopher Ho, David F. Yancey, Davy L. S. Nieskens, Andrzej Malek
-
Patent number: 11884605Abstract: A hybrid catalyst including a metal oxide catalyst component comprising chromium, zinc, and at least one additional metal selected from the group consisting of aluminum and gallium, and a microporous catalyst component that is a molecular sieve having 8-MR pore openings. The metal oxide catalyst component includes anatomic ratio of chromium:zinc (Cr:Zn) from 0.35 to 1.00, and the at least one additional metal is present in an amount from 25.0 at % to 40.0 at %. A process for preparing C2 and C3 olefins comprising: a) introducing a feed stream comprising hydrogen gas and a carbon-containing gas selected from the group consisting of carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor; and b) converting the feed stream into a product stream comprising C2 and C3 olefins in the reaction zone in the presence of said hybrid catalyst.Type: GrantFiled: June 20, 2019Date of Patent: January 30, 2024Assignee: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L. S. Nieskens, Vera P. Santos Castro, Alexey Kirilin, Adam Chojecki, David Yancey, Andrzej Malek
-
Publication number: 20230321637Abstract: A catalyst comprising a noble metal disposed on a support. The noble metal is present in an amount ranging from 0.1 wt % to 10 wt % relative to the total weight of the catalyst. The support comprises at least 50 wt % silicon carbide relative to the total weight of the support. The silicon carbide has a surface area of at least 5 m2/g. A method for preparing methyl methacrylate from methacrolein and methanol using the catalyst is also disclosed.Type: ApplicationFiled: July 13, 2021Publication date: October 12, 2023Inventors: Alexey Kirilin, Kirk W. Limbach, Wen Sheng Lee, Jeffrey A. Herron, Victor J. Sussman
-
Publication number: 20230257327Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.Type: ApplicationFiled: April 26, 2023Publication date: August 17, 2023Applicant: Dow Global Technologies LLCInventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
-
Publication number: 20230256424Abstract: A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings and may be derived from a natural mineral, the product stream comprises a combined C2 and C3 selectivity greater than 40 carbon mol%.Type: ApplicationFiled: June 18, 2021Publication date: August 17, 2023Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Dean M. Millar, Adam Chojecki, Joseph F. DeWilde, Glenn Pollefeyt, Davy L.S. Nieskens, Andrzej Malek
-
Patent number: 11724974Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.Type: GrantFiled: August 27, 2019Date of Patent: August 15, 2023Assignee: Dow Global Technologies LLCInventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
-
Publication number: 20230234899Abstract: A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings less than or equal to 5.1 A and a cage defining ring size less than or equal to 7.45 A, where a C2/C3 carbon molar ratio of the product stream is greater than or equal to 0.7.Type: ApplicationFiled: June 18, 2021Publication date: July 27, 2023Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Dean M. Millar, Adam Chojecki, Joseph F. DeWilde, Glenn Pollefeyt, Davy L.S. Nieskens, Andrzej Malek
-
Publication number: 20230062065Abstract: A process for preparing C2 to C4 olefins includes introducing a feed stream of hydrogen gas and a carbon-containing gas into a reaction zone of a reactor and converting the feed stream into a product stream including C2 to C4 olefins in the reaction zone in the presence of a hybrid catalyst and in a non-oxidative atmosphere. The hybrid catalyst includes a metal oxide catalyst component comprising gallium oxide and zirconia, and a microporous catalyst component having an 8 membered ring structure. The process also includes periodically introducing an oxidative atmosphere into the reaction zone.Type: ApplicationFiled: December 14, 2020Publication date: March 2, 2023Applicant: Dow Global Technologies LLCInventors: Joseph F. DEWILDE, Adam CHOJECKI, Alexey KIRILIN, Ewa A. TOCHA-BIELAK, David F. Yancey, Glenn Pollefeyt, Davy L.S. NIESKENS, Andrzej MALEK
-
Publication number: 20230052682Abstract: A process for preparing C2 to C4 hydrocarbons includes introducing a feed stream into a reaction zone of a reactor, the feed stream comprising hydrogen gas and carbon monoxide. An additional stream is introduced into the reaction zone of the reactor, the additional stream comprising carbon dioxide. A combined stream that includes the feed stream and the additional stream is converted into a product stream comprising C2 to C4 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a mixed metal oxide catalyst component, and a microporous catalyst component. The process operates at a gas hourly space velocity in excess of 2500 hr-1 and effectively yields a net carbon dioxide selectivity of less than 5.0% and a productivity of C2-C4 hydrocarbons greater than 75 g hydrocarbons per kilogram of catalyst per hour.Type: ApplicationFiled: December 2, 2020Publication date: February 16, 2023Applicant: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L.S. Nieskens, Alexey Kirilin, Adam Chojecki, Joseph F. Dewilde, Barry B. Fish, Andrzej Malek
-
Patent number: 11548835Abstract: A process for preparing C2 to C5 olefins includes introducing a feed stream comprising hydrogen and at least one carbon-containing component selected from the group consisting of CO, CO2, and mixtures thereof into a reaction zone. The feed stream is contacted with a hybrid catalyst in the reaction zone, and a product stream is formed that exits the reaction zone and includes C2 to C5 olefins. The hybrid catalyst includes a methanol synthesis component and a solid microporous acid component that is selected from molecular sieves having 8-MR access and having a framework type selected from the group consisting of CHA, AEI, AFX, ERI, LTA, UFI, RTH, and combinations thereof. The methanol synthesis component comprises a metal oxide support and a metal catalyst. The metal oxide support includes titania, zirconia, hafnia or mixtures thereof, and the metal catalyst includes zinc.Type: GrantFiled: October 11, 2018Date of Patent: January 10, 2023Assignee: Dow Global TechnologiesInventors: Alexey Kirilin, Adam Chojecki, Kyle C. Andrews, Vera P. Santos Castro, Aysegul Ciftci Sandikci, Davy L. S. Nieskens, Peter E. Groenendijk, Andrzej Malek
-
Publication number: 20220395815Abstract: A method for preparing a heterogeneous catalyst. The method comprises steps of: (a) combining (i) a support, (ii) an aqueous solution of a noble metal compound and (iii) a C2-C18 thiol comprising at least one hydroxyl or carboxylic acid substituent; to form a wet particle and (b) removing water from the wet particle by drying followed by calcination to produce the catalyst.Type: ApplicationFiled: August 17, 2022Publication date: December 15, 2022Inventors: Victor J. Sussman, Wen-Sheng Lee, Jeffrey A. Herron, D. Wayne Blaylock, Daniel J. Arriola, Andrew T. Heitsch, Alexey Kirilin, Heidi Clements, Abrin L. Schmucker, Daniel A. Hickman
-
Patent number: 11446642Abstract: A hybrid catalyst including a metal oxide catalyst component comprising chromium, zinc, and at least one additional metal selected from the group consisting of iron and manganese, and a microporous catalyst component that is a molecular sieve having 8-MR pore openings. The at least one additional metal is present in an amount from 5.0 at % to 20.0 at %.Type: GrantFiled: June 20, 2019Date of Patent: September 20, 2022Assignee: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L. S. Nieskens, Vera P. Santos Castro, Alexey Kirilin, Adam Chojecki, David Yancey, Andrzej Malek
-
Publication number: 20220220044Abstract: A method for preparing C2 to C5 paraffins including introducing a feed stream of hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. Converting the feed stream into a product stream that includes C2 to C5 paraffins in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst including a microporous catalyst component; and a metal oxide catalyst component. The metal oxide catalyst component including a metal component present on a metal oxide support material. The metal oxide support material includes at least one oxide of a metal selected from Group 4 of the IUPAC periodic table of elements. The product stream has a C3/C2 carbon molar ratio greater than or equal to 4.0.Type: ApplicationFiled: May 7, 2020Publication date: July 14, 2022Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Adam Chojecki, Joseph F. Dewilde, Glenn Pollefeyt, Davy L.S. Nieskens, Andrzej Malek
-
Publication number: 20220089814Abstract: A process for preparing a copolymer polyol containing a reduced content of residual monomers and volatiles including the steps of: (a) providing at least one copolymer polyol containing a first initial content of residual monomers and volatiles; (b) providing at least one molecular sieve adsorbent; (c) contacting the at least one copolymer polyol with the at least one molecular sieve adsorbent for a period of time and at a temperature sufficient for the at least one molecular sieve adsorbent to adsorb at least a portion of the first initial content of residual monomers and volatiles present in the at least one copolymer polyol to reduce the first initial content of residual monomers and volatiles of the at least one copolymer polyol to form at least one copolymer polyol containing a second reduced content of residual monomers and volatiles; and (d) separating the at least one molecular sieve adsorbent containing a portion of the first initial content residual monomers and volatiles from the at least one copolType: ApplicationFiled: January 30, 2020Publication date: March 24, 2022Inventors: Sven Claessens, Alexey Kirilin, Van Gaalen Gerrit-Jan, Balamurali Sreedhar, An Adams
-
Publication number: 20220088574Abstract: A method for preparing C2 to C5 paraffins includes introducing a feed stream including hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. Converting the feed stream into a product stream including C2 to C5 paraffins in the presence of a hybrid catalyst. The hybrid catalyst includes a microporous catalyst component; and a metal oxide catalyst component selected from (A) a bulk material consisting of gallium oxide, (B) gallium oxide present on a titanium dioxide support material, and (C) a mixture of gallium oxide and at least one promoter present on a support material selected from Group 4 of the IUPAC periodic table of elements.Type: ApplicationFiled: December 16, 2019Publication date: March 24, 2022Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Adam Chojecki, Glenn Pollefeyt, Davy L.S. Nieskens, Kyle C. Andrews, Vera P. Santos Castro, Joseph F. DeWilde, David F. Yancey, Andrzej Malek
-
Publication number: 20220080392Abstract: A process for preparing C2 to C4 olefins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. The feed stream is converted into a product stream including C2 to C4 olefins in the reaction zone in the presence of the hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component comprising gallium oxide and phase pure zirconia, and a microporous catalyst component.Type: ApplicationFiled: December 16, 2019Publication date: March 17, 2022Applicant: Dow Global Technologies LLCInventors: Adam Chojecki, Alexey Kirilin, Andrzej Malek, Joseph F. DeWilde, Vera P. Santos Castro, David F. Yancey, Kyle C. Andrews