Patents by Inventor Alexey Koposov

Alexey Koposov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140162400
    Abstract: A method is provided for forming an alkali metal-doped solution-processed metal chalcogenide. A first solution is formed that includes a first material group of metal salts, metal complexes, or combinations thereof, dissolved in a solvent. The first material group may include one or more of the following elements: copper (Cu), indium (In), and gallium (Ga). An alkali metal-containing material is added to the first solution, and the first solution is deposited on a conductive substrate. The alkali metal-containing material may be sodium (Na). An alkali metal-doped first intermediate film results, comprising metal precursors from corresponding members of the first material group. Then, thermally annealing is performed in an environment of selenium (Se), Se and hydrogen (H2), hydrogen selenide (H2Se), sulfur (S), S and H2, hydrogen sulfide (H2S), or combinations thereof. The metal precursors in the alkali metal-doped first intermediate film are transformed, and an alkali metal-doped chalcogenide layer is formed.
    Type: Application
    Filed: February 21, 2013
    Publication date: June 12, 2014
    Inventors: Sean Vail, Gary Foley, Alexey Koposov
  • Publication number: 20140134791
    Abstract: A method is provided for forming a solution-processed metal and mixed-metal selenide semiconductor using selenium (Se) nanoparticles (NPs). The method forms a first solution including SeNPs dispersed in a solvent. Added to the first solution is a second solution including a first material set of metal salts, metal complexes, or combinations thereof, which are dissolved in a solvent, forming a third solution. The third solution is deposited on a conductive substrate, forming a first intermediate film comprising metal precursors, from corresponding members of the first material set, and embedded SeNPs. As a result of thermally annealing, the metal precursors are transformed and the first intermediate film is selenized, forming a first metal selenide-containing semiconductor. In one aspect, the first solution further comprises ligands for the stabilization of SeNPs, which are liberated during thermal annealing.
    Type: Application
    Filed: November 10, 2012
    Publication date: May 15, 2014
    Inventors: Sean Andrew VAIL, Alexey KOPOSOV, Jong-Jan LEE
  • Publication number: 20140134792
    Abstract: Methods are provided for fabricating a solution-processed metal and mixed-metal selenide semiconductor using a selenium (Se) film layer. One aspect provides a conductive substrate and deposits a first Se film layer over the conductive substrate. A first solution, including a first material set of metal salts, metal complexes, or combinations thereof, is dissolved in a solvent and deposited on the first Se film layer. A first intermediate film comprising metal precursors is formed from corresponding members of the first material set. In one aspect, a plurality of intermediate films is formed using metal precursors from the first material set or a different material set. In another aspect, a second Se film layer is formed overlying the intermediate film(s). Thermal annealing is performed in an environment including hydrogen (H2), hydrogen selenide (H2Se), or Se/H2. The metal precursors are transformed in the intermediate film(s), and a metal selenide-containing semiconductor is formed.
    Type: Application
    Filed: December 18, 2012
    Publication date: May 15, 2014
    Inventors: Sean Andrew Vail, Alexey Koposov, Wei Pan, Gary D. Foley, Jong-Jan Lee
  • Publication number: 20140116509
    Abstract: A solid-state hole transport composite material (ssHTM) is provided. The ssHTM is made from a neutral charge first p-type organic semiconductor, and a chemically oxidized first p-type semiconductor, where the dopants are silver(I) containing materials. A reduced form of the silver(I) containing material is also retained as functional component in the ssHTM. In one aspect, the silver(I) containing material is silver bis(trifluoromethanesulfonyl)imide (TFSI). In another aspect, the first p-type organic semiconductor is 2,2?,7,7?-tetrakis(N,N-di-p-methoxyphenylamine)-9,9?-spirobifluorene (Spiro-OMeTAD). In one variation, the ssHTM additionally includes a first p-type organic semiconductor doped with an ionic dopant such as lithium (Li+), sodium (Na+), potassium (K+), or combinations of the above-mentioned materials. Also provided are a method for synthesizing the above-described ssHTM, and a solid-state dye solar cell (ssDSC) fabricated from the ssHTM.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Inventors: Sean Andrew Vail, Alexey Koposov, Wei Pan, Gary D. Foley, Jong-Jan Lee
  • Publication number: 20140091278
    Abstract: Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Milan Sykora, Alexey Koposov, Nobuhiro Fuke
  • Patent number: 8685779
    Abstract: A method is provided for forming a Group VA-doped solution-processed metal chalcogenide. The method forms a first solution including a first material group, dissolved in solvent. A Group VA-containing material is added to the first solution. The Group VA-containing material may include arsenic (As), antimony (Sb), bismuth (Bi), or combinations thereof. The first solution is deposited on a conductive substrate, and a Group VA-doped first intermediate film is formed comprising metal precursors from corresponding members of the first material group. Thermal annealing is performed in an environment of selenium (Se), Se and hydrogen (H2), hydrogen selenide (H2Se), sulfur (S), S and H2, hydrogen sulfide (H2S), or combinations thereof. As a result, the metal precursors in the Group VA-doped first intermediate film are transformed, forming a Group VA-doped metal chalcogenide layer. In one aspect, an antimony-doped Cu—In—Ga—Se chalcogenide (CIGS) is formed.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 1, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sean Vail, Alexey Koposov, Gary Foley
  • Publication number: 20130258456
    Abstract: An energy-efficient transparent solar film is presented. The solar film has a first film layer with metal nanostructures. The metal nanostructures have plasmon resonances in wavelength bands greater than, or both less than and greater than visible wavelengths, depending on size and shape. The metal nanostructures have no plasmon resonance at visible wavelengths. In another aspect, metal oxide nanocrystals are formed with the first film layer. The metal oxide nanocrystals have absorption in a band of wavelengths less than visible wavelengths, and absorption in a band of wavelengths greater than visible wavelengths. Also provided is a solar film window and fabricating method.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 3, 2013
    Inventors: Akinori Hashimura, Douglas Tweet, Gary Hinch, Alexey Koposov