Patents by Inventor Alexey Kovsh

Alexey Kovsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12218484
    Abstract: Embodiments of the present disclosure are directed to a semiconductor optical amplifier including a semiconductor-based gain medium configured to receive a drive current and a variable-width waveguide coupled to the in the semiconductor-based gain medium, the variable-width waveguide including a plurality of narrow width regions and a plurality of wide width regions positioned alternately along a longitudinal axis of the waveguide. The variable-width waveguide further includes a plurality of transition regions having an adiabatically varying widths. Each transition region connects adjacent ones of the plurality of narrow width and width regions and the waveguide has a reduced drive current density in the plurality of wide width regions relative to the drive current density in the plurality of narrow width regions.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: February 4, 2025
    Assignee: ARISTA NETWORKS, INC.
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson
  • Publication number: 20240385393
    Abstract: An optical coupling element is configured to be positioned between and optically couple a first optical component configured to transmit a light beam, and a second optical component configured to receive light. The optical coupling element comprises a glass coupler body having a receiving side surface and an opposite transmitting side surface. The glass coupler body comprises a converging member configured to reduce divergence of light entering the glass coupler body via the receiving side surface; and a coupling waveguide extending within the glass coupler body between the converging member and an output facet on the transmitting side surface and being configured to transmit light from the converging member to the output facet.
    Type: Application
    Filed: February 20, 2024
    Publication date: November 21, 2024
    Inventors: Alexey Kovsh, Aleksei Borodkin, Vladislav Bougrov, Alexey Gubenko, Sergey Mikhrin
  • Publication number: 20240383075
    Abstract: In a method for manufacturing an optical coupling arrangement, first and second optical components having transmitting and receiving facets, respectively, are positioned with the facet facing each other. A glass coupler preform body with a converging element is positioned between the optical components, the converging element facing the transmitting facet configured to transmit a light beam. A coupling waveguide is designed, taking into account positioning misalignments, to transmit light between the converging member and a transmitting facet, and at least part of the designed coupling waveguide is formed in the coupler preform body.
    Type: Application
    Filed: May 16, 2023
    Publication date: November 21, 2024
    Inventors: Vladislav Bougrov, Sergey Mikhrin, Alexey Kovsh, Alexey Gubenko
  • Publication number: 20240385382
    Abstract: An optical coupling element is configured to be positioned between and optically couple a first optical component configured to transmit a light beam, and a second optical component configured to receive light. The optical coupling element comprises a glass coupler body having a receiving side surface and an opposite transmitting side surface. The glass coupler body comprises a converging member configured to reduce divergence of light entering the glass coupler body via the receiving side surface; and a coupling waveguide extending within the glass coupler body between the converging member and an output facet on the transmitting side surface and being configured to transmit light from the converging member to the output facet.
    Type: Application
    Filed: May 16, 2023
    Publication date: November 21, 2024
    Inventors: Vladislav Bougrov, Sergey Mikhrin, Alexey Gubenko, Alexey Kovsh
  • Publication number: 20240388364
    Abstract: An optical coupling element is configured to be positioned between and optically couple a first optical component configured to transmit a light beam, and a second optical component configured to receive light. The optical coupling element comprises a glass coupler body having a receiving side surface and an opposite transmitting side surface. The glass coupler body comprises a converging member configured to reduce divergence of light entering the glass coupler body via the receiving side surface; and a coupling waveguide extending within the glass coupler body between the converging member and an output facet on the transmitting side surface and being configured to transmit light from the converging member to the output facet.
    Type: Application
    Filed: September 8, 2023
    Publication date: November 21, 2024
    Inventors: Vladislav Bougrov, Sergey Mikhrin, Alexey Kovsh, Aleksei Borodkin, Alexey Gubenko
  • Patent number: 12142890
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: November 12, 2024
    Assignee: ARISTA NETWORKS, INC.
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Publication number: 20240291237
    Abstract: An optical source is described. This optical source may include: an optical cavity that includes at least one mirror; and a semiconductor laser chip having multiple epitaxial gain layers, where the epitaxial gain layers act as a gain medium that provides multiple lasing wavelengths in a band of frequencies without mode hopping and/or with significantly reduced mode beating below a predetermined value. Moreover, the optical source may include an optical component that selects laser modes of the optical cavity, where the optical component includes: an aperiodic grating; an echelle grating having a common arm that includes the epitaxial gain layers and multiple output arms that provide the lasing wavelengths; or a set of ring resonators that provide the lasing wavelengths.
    Type: Application
    Filed: February 28, 2023
    Publication date: August 29, 2024
    Applicant: Axalume, Inc.
    Inventors: Ashok V. Krishnamoorthy, Alexey Kovsh
  • Patent number: 12063064
    Abstract: A method for managing optical transceivers includes obtaining laser measurements for a laser operating in an optical transceiver in a network device, obtaining a failure profile for the laser, making a first determination that the laser measurements match the failure profile, and based on the first determination, initiating a remediation action for the optical transceiver.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: August 13, 2024
    Assignee: Arista Networks, Inc.
    Inventors: Alexey Kovsh, David Towne
  • Publication number: 20230231358
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Application
    Filed: January 31, 2023
    Publication date: July 20, 2023
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Publication number: 20230224031
    Abstract: A method for managing optical transceivers includes obtaining laser measurements for a laser operating in an optical transceiver in a network device, obtaining a failure profile for the laser, making a first determination that the laser measurements match the failure profile, and based on the first determination, initiating a remediation action for the optical transceiver.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Inventors: Alexey Kovsh, David Towne
  • Patent number: 11632170
    Abstract: A method for managing optical transceivers includes obtaining laser measurements for a laser operating in an optical transceiver in a network device, obtaining a failure profile for the laser, making a first determination that the laser measurements match the failure profile, and based on the first determination, initiating a remediation action for the optical transceiver.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 18, 2023
    Assignee: Arista Networks, Inc.
    Inventors: Alexey Kovsh, David Towne
  • Patent number: 11594854
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 28, 2023
    Assignee: Arista Networks, Inc.
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Patent number: 11557875
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 17, 2023
    Assignee: ARISTA NETWORKS, INC.
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Publication number: 20220320826
    Abstract: Embodiments of the present disclosure are directed to a semiconductor optical amplifier including a semiconductor-based gain medium configured to receive a drive current and a variable-width waveguide coupled to the in the semiconductor-based gain medium, the variable-width waveguide including a plurality of narrow width regions and a plurality of wide width regions positioned alternately along a longitudinal axis of the waveguide. The variable-width waveguide further includes a plurality of transition regions having an adiabatically varying widths. Each transition region connects adjacent ones of the plurality of narrow width and width regions and the waveguide has a reduced drive current density in the plurality of wide width regions relative to the drive current density in the plurality of narrow width regions.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 6, 2022
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson
  • Publication number: 20220320821
    Abstract: A semiconductor optical amplifier (SOA) receives a multiwavelength input optical signal and amplifies the multiwavelength input optical signal to generate an amplified multiwavelength optical signal. A waveguide is coupled to receive the amplified multiwavelength optical signal. The waveguide includes an enhanced chromatic dispersion segment configured to increase chromatic dispersion experienced by the multiwavelength optical signal as the multiwavelength optical signal propagates through the waveguide and is amplified by the SOA. This increase in chromatic dispersion reduces noise, such as four-wave mixing noise, in the amplified multiwavelength optical signal.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 6, 2022
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson
  • Publication number: 20220029379
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 27, 2022
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Publication number: 20220029380
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 27, 2022
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Publication number: 20210384969
    Abstract: A method for managing optical transceivers includes obtaining laser measurements for a laser operating in an optical transceiver in a network device, obtaining a failure profile for the laser, making a first determination that the laser measurements match the failure profile, and based on the first determination, initiating a remediation action for the optical transceiver.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 9, 2021
    Inventors: Alexey Kovsh, David Towne
  • Patent number: 10290993
    Abstract: A VCSEL illuminator module includes a module forming a physical cavity having electrical contacts positioned on an inner surface of the module that feed through the module to electrical contacts positioned on an outer surface of the module. A VCSEL device is positioned on the inner surface module and includes electrical contacts that are electrically connected to the electrical contacts on the inner surface of the module. The VCSEL device generates an optical beam when current is applied to the electrical contacts. An optical element is positioned adjacent to an emitting surface of the VCSEL device and is configured to modify the optical beam generated by the VCSEL device.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: May 14, 2019
    Assignee: Princeton Optronics, Inc.
    Inventors: Tong Chen, Chuni Ghosh, Qing Wang, Alexey Kovsh, Laurence Watkins
  • Publication number: 20170353004
    Abstract: A VCSEL illuminator module includes a module forming a physical cavity having electrical contacts positioned on an inner surface of the module that feed through the module to electrical contacts positioned on an outer surface of the module. A VCSEL device is positioned on the inner surface module and includes electrical contacts that are electrically connected to the electrical contacts on the inner surface of the module. The VCSEL device generates an optical beam when current is applied to the electrical contacts. An optical element is positioned adjacent to an emitting surface of the VCSEL device and is configured to modify the optical beam generated by the VCSEL device.
    Type: Application
    Filed: May 25, 2017
    Publication date: December 7, 2017
    Applicant: Princeton Optronics, Inc.
    Inventors: Tong Chen, Chuni Ghosh, Qing Wang, Alexey Kovsh, Laurence Watkins