Patents by Inventor Alexey Polyudov

Alexey Polyudov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11237660
    Abstract: A method includes a processor of an electronic device receiving first input signals from a first sensor in response to user contact at a first edge of the device and second input signals from a second sensor in response to user contact at a second edge of the electronic device. The first and second sensors are covered by a housing of the device. The processor determines an external context of the device based on analysis of the first input signals and the second input signals. The determined external context indicates at least a position of the device relative to a user or an orientation of the device relative to a user. Responsive to determining the external context, the electronic device executes a particular user input action.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: February 1, 2022
    Assignee: Google LLC
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Seungyon Lee, Yun-Ling Lee, Philip Quinn, Kishore Sundara-Rajan, Shumin Zhai, Debanjan Mukherjee, James B. Miller, Isaac William Reynolds
  • Publication number: 20200257391
    Abstract: A method includes a processor of an electronic device receiving first input signals from a first sensor in response to user contact at a first edge of the device and second input signals from a second sensor in response to user contact at a second edge of the electronic device. The first and second sensors are covered by a housing of the device. The processor determines an external context of the device based on analysis of the first input signals and the second input signals. The determined external context indicates at least a position of the device relative to a user or an orientation of the device relative to a user. Responsive to determining the external context, the electronic device executes a particular user input action.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Seungyon Lee, Yun-Ling Lee, Philip Quinn, Kishore Sundara-Rajan, Shumin Zhai, Debanjan Mukherjee, James B. Miller, Isaac William Reynolds
  • Patent number: 10642383
    Abstract: An apparatus utilizes multiple strain gauge (“SG”) sensing units which are each disposed adjacent an inner surface of the device housing. Electrical voltage generated by the SGs is amplified by one or more amplifiers to maximize the resolution between a voltage output of an SG when in a non-pressed state and a voltage output of the SG when in a pressed state. Additionally, an electronic circuit is configured to identify a baseline voltage output for an SG over a period of time for comparing to a voltage output for the SG when the SG is in a pressed state such that the pressed state of the SG can be identified by the electronic circuit by comparing a current output voltage of the SG to the identified baseline voltage.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 5, 2020
    Assignee: Google LLC
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Kishore Sundara-Rajan, Debanjan Mukherjee, James B. Miller, James Aaron Cooper, Kelvin Kwong, Philip Quinn
  • Patent number: 10635255
    Abstract: A method includes a processor of an electronic device receiving first input signals from a first sensor in response to user contact at a first edge of the device and second input signals from a second sensor in response to user contact at a second edge of the electronic device. The first and second sensors are covered by a housing of the device. The processor determines an external context of the device based on analysis of the first input signals and the second input signals. The determined external context indicates at least a position of the device relative to a user or an orientation of the device relative to a user. Responsive to determining the external context, the electronic device executes a particular user input action.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: April 28, 2020
    Assignee: Google LLC
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Seungyon Lee, Yun-Ling Lee, Philip Quinn, Kishore Sundara-Rajan, Shumin Zhai, Debanjan Mukherjee, James B. Miller, Isaac William Reynolds
  • Patent number: 10514797
    Abstract: A method includes one or more processors of an electronic device receiving signals from multiple sensors located along an edge of the device. The signals are received in response to external contact being provided to the edge of the device. At least one processor determines a distribution of forces applied to the sensors based on the input signals. Based on the determined distribution of forces, the processor determines: i) a location of the external contact that is offset from a location of each of the multiple sensors, and ii) a magnitude of the force of the external contact. The processor detects whether sensing criteria has been satisfied based on an analysis of: i) the location of the external contact and ii) the magnitude of the force of the external contact. Responsive to detecting that sensing criteria has been satisfied, the processor executes a user input action.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 24, 2019
    Assignee: Google LLC
    Inventors: Tyler Reed Kugler, Stuart Murray Scott, Alexey Polyudov, Seungyon Lee, Philip Quinn, Kishore Sundara-Rajan, Shumin Zhai, Debanjan Mukherjee, James B. Miller
  • Publication number: 20180300004
    Abstract: A method includes one or more processors of an electronic device receiving signals from multiple sensors located along an edge of the device. The signals are received in response to external contact being provided to the edge of the device. At least one processor determines a distribution of forces applied to the sensors based on the input signals. Based on the determined distribution of forces, the processor determines: i) a location of the external contact that is offset from a location of each of the multiple sensors, and ii) a magnitude of the force of the external contact. The processor detects whether sensing criteria has been satisfied based on an analysis of: i) the location of the external contact and ii) the magnitude of the force of the external contact. Responsive to detecting that sensing criteria has been satisfied, the processor executes a user input action.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 18, 2018
    Inventors: Tyler Reed Kugler, Stuart Murray Scott, Alexey Polyudov, Seungyon Lee, Philip Quinn, Kishore Sundara-Rajan, Shumin Zhai, Debanjan Mukherjee, James B. Miller
  • Publication number: 20180299996
    Abstract: A method includes a processor of an electronic device receiving first input signals from a first sensor in response to user contact at a first edge of the device and second input signals from a second sensor in response to user contact at a second edge of the electronic device. The first and second sensors are covered by a housing of the device. The processor determines an external context of the device based on analysis of the first input signals and the second input signals. The determined external context indicates at least a position of the device relative to a user or an orientation of the device relative to a user. Responsive to determining the external context, the electronic device executes a particular user input action.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 18, 2018
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Seungyon Lee, Yun-Ling Lee, Philip Quinn, Kishore Sundara-Rajan, Shumin Zhai, Debanjan Mukherjee, James B. Miller, Isaac William Reynolds
  • Publication number: 20180284906
    Abstract: An apparatus utilizes multiple strain gauge (“SG”) sensing units which are each disposed adjacent an inner surface of the device housing. Electrical voltage generated by the SGs is amplified by one or more amplifiers to maximize the resolution between a voltage output of an SG when in a non-pressed state and a voltage output of the SG when in a pressed state. Additionally, an electronic circuit is configured to identify a baseline voltage output for an SG over a period of time for comparing to a voltage output for the SG when the SG is in a pressed state such that the pressed state of the SG can be identified by the electronic circuit by comparing a current output voltage of the SG to the identified baseline voltage.
    Type: Application
    Filed: May 29, 2018
    Publication date: October 4, 2018
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Kishore Sundara-Rajan, Debanjan Mukherjee, James B. Miller, James Aaron Cooper, Kelvin Kwong, Philip Quinn
  • Patent number: 10013081
    Abstract: An apparatus utilizes multiple strain gauge (“SG”) sensing units which are each disposed adjacent an inner surface of the device housing. Electrical voltage generated by the SGs is amplified by one or more amplifiers to maximize the resolution between a voltage output of an SG when in a non-pressed state and a voltage output of the SG when in a pressed state. Additionally, an electronic circuit is configured to identify a baseline voltage output for an SG over a period of time for comparing to a voltage output for the SG when the SG is in a pressed state such that the pressed state of the SG can be identified by the electronic circuit by comparing a current output voltage of the SG to the identified baseline voltage.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: July 3, 2018
    Assignee: Google LLC
    Inventors: Tyler Reed Kugler, Alexey Polyudov, Kishore Sundara-Rajan, Debanjan Mukherjee, James B. Miller, James Aaron Cooper, Kelvin Kwong, Philip Quinn