Patents by Inventor Alexey Vasilyevitch Khvalkovskiy

Alexey Vasilyevitch Khvalkovskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10297300
    Abstract: A method for measuring a temperature of magnetic junction switchable using spin transfer. The magnetic junction includes at least one magnetic layer. The method includes measuring a temperature variation of at least one magnetic characteristic for the magnetic layer(s) versus temperature. The method also includes measuring a bias variation in the magnetic characteristic versus an electrical bias for the magnetic junction. This measurement is performed such that spin transfer torque-induced variation(s) in the magnetic characteristic(s) are accounted for. The temperature versus the electrical bias for the magnetic junction is determined based on the temperature variation and the bias variation.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: May 21, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sebastian Schafer, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Robert Beach, Zheng Duan
  • Patent number: 10276226
    Abstract: A method for measuring a temperature of magnetic junction switchable using spin transfer. The magnetic junction includes at least one magnetic layer. The method includes measuring a temperature variation of at least one magnetic characteristic for the magnetic layer(s) versus temperature. The method also includes measuring a bias variation in the magnetic characteristic versus an electrical bias for the magnetic junction. This measurement is performed such that spin transfer torque-induced variation(s) in the magnetic characteristic(s) are accounted for. The temperature versus the electrical bias for the magnetic junction is determined based on the temperature variation and the bias variation.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 30, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sebastian Schafer, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Robert Beach, Zheng Duan
  • Publication number: 20180294024
    Abstract: A method for measuring a temperature of magnetic junction switchable using spin transfer. The magnetic junction includes at least one magnetic layer. The method includes measuring a temperature variation of at least one magnetic characteristic for the magnetic layer(s) versus temperature. The method also includes measuring a bias variation in the magnetic characteristic versus an electrical bias for the magnetic junction. This measurement is performed such that spin transfer torque-induced variation(s) in the magnetic characteristic(s) are accounted for. The temperature versus the electrical bias for the magnetic junction is determined based on the temperature variation and the bias variation.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Sebastian Schafer, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Robert Beach, Zheng Duan
  • Patent number: 9929339
    Abstract: A magnetic junction usable in a magnetic device is described. The magnetic junction includes a first reference layer, first and second spacer layers, a free layer and a self-initializing (SI) substructure. The first spacer layer is between the free and first reference layers. The free layer is switchable between stable magnetic states when a write current having at least a critical magnitude is passed through the magnetic junction. The second spacer layer is between the SI substructure and the free layer. The SI substructure is selected from first, second and third substructures. The first and second substructures include an SI reference layer having a magnetic moment switchable between the first and second directions when a current having a magnitude of not more than one-half of the critical magnitude is passed through the magnetic junction. The third substructure includes a temperature dependent reference layer.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: March 27, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov
  • Patent number: 9741927
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a reference layer, a nonmagnetic spacer layer and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The free layer has a gradient in a magnetic ordering temperature such that a first portion of the free layer has a first magnetic ordering temperature higher than a second magnetic ordering temperature of a second portion of the free layer. The first portion of the free layer is closer to the reference layer than the second portion of the free layer. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: August 22, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy
  • Patent number: 9490421
    Abstract: A method and system provide a magnetic junction usable in a magnetic device and which resides on a substrate. The magnetic junction includes a reference layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The free layer, the nonmagnetic spacer layer and the reference layer form nonzero angle(s) with the substrate. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: November 8, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Steven M. Watts
  • Patent number: 9478730
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the pinned layer and the free layer includes a magnetic substructure. The magnetic substructure includes at least two magnetic layers interleaved with at least one insertion layer. Each of the at least one insertion layer includes at least one of Bi, W, I, Zn, Nb, Ag, Cd, Hf, Os, Mo, Ca, Hg, Sc, Y, Sr, Mg, Ti, Ba, K, Na, Rb, Pb, and Zr. The at least two magnetic layers are magnetically coupled.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: October 25, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Roman Chepulskyy, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy
  • Patent number: 9460397
    Abstract: A quantum computing device magnetic memory is described. The quantum computing device magnetic memory is coupled with a quantum processor including at least one quantum device corresponding to at least one qubit. The quantum computing device magnetic memory includes magnetic storage cells coupled with the quantum device(s) and bit lines coupled to the magnetic storage cells. Each of the magnetic storage cells includes at least one magnetic junction. The magnetic junction(s) include a reference layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The magnetic junction(s) are configured to allow the free layer to be switched between stable magnetic states. The magnetic junction(s) are configured such that the free layer has a nonzero initial writing spin transfer torque in an absence of thermal fluctuations.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: October 4, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dmytro Apalkov, Matthew J. Carey, Mohamad Towfik Krounbi, Alexey Vasilyevitch Khvalkovskiy
  • Publication number: 20160197264
    Abstract: A magnetic junction usable in a magnetic device is described. The magnetic junction includes a first reference layer, first and second spacer layers, a free layer and a self-initializing (SI) substructure. The first spacer layer is between the free and first reference layers. The free layer is switchable between stable magnetic states when a write current having at least a critical magnitude is passed through the magnetic junction. The second spacer layer is between the SI substructure and the free layer. The SI substructure is selected from first, second and third substructures. The first and second substructures include an SI reference layer having a magnetic moment switchable between the first and second directions when a current having a magnitude of not more than one-half of the critical magnitude is passed through the magnetic junction. The third substructure includes a temperature dependent reference layer.
    Type: Application
    Filed: December 28, 2015
    Publication date: July 7, 2016
    Inventors: Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov
  • Publication number: 20160104544
    Abstract: A method for measuring a temperature of magnetic junction switchable using spin transfer. The magnetic junction includes at least one magnetic layer. The method includes measuring a temperature variation of at least one magnetic characteristic for the magnetic layer(s) versus temperature. The method also includes measuring a bias variation in the magnetic characteristic versus an electrical bias for the magnetic junction. This measurement is performed such that spin transfer torque-induced variation(s) in the magnetic characteristic(s) are accounted for. The temperature versus the electrical bias for the magnetic junction is determined based on the temperature variation and the bias variation.
    Type: Application
    Filed: September 15, 2015
    Publication date: April 14, 2016
    Inventors: Sebastian Schafer, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Robert Beach, Zheng Duan
  • Publication number: 20150357556
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the pinned layer and the free layer includes a magnetic substructure. The magnetic substructure includes at least two magnetic layers interleaved with at least one insertion layer. Each of the at least one insertion layer includes at least one of Bi, W, I, Zn, Nb, Ag, Cd, Hf, Os, Mo, Ca, Hg, Sc, Y, Sr, Mg, Ti, Ba, K, Na, Rb, Pb, and Zr. The at least two magnetic layers are magnetically coupled.
    Type: Application
    Filed: April 18, 2013
    Publication date: December 10, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Roman Chepulskyy, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy
  • Patent number: 9203017
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic includes a pinned layer, a nonmagnetic spacer layer, a free layer, and package structure(s). The pinned layer has a pinned layer perimeter and a top surface. The nonmagnetic spacer layer is on at least part of the top surface and between the pinned and free layers. The free layer has a free layer perimeter. The package structure(s) are ferromagnetic and encircles at least one of the free layer and the pinned layer. The package structure(s) are ferromagnetically coupled with the pinned layer. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: December 1, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmytro Apalkov, Vladimir Nikitin, Alexey Vasilyevitch Khvalkovskiy
  • Patent number: 9166152
    Abstract: A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a plurality of magnetic layers including a nonmagnetic spacer layer. The magnetic junction also includes at least one diffusionless transformation layer. The magnetic junction is configured to be switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 20, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keith Chan, Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov
  • Publication number: 20150295167
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a reference layer, a nonmagnetic spacer layer and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The free layer has a gradient in a magnetic ordering temperature such that a first portion of the free layer has a first magnetic ordering temperature higher than a second magnetic ordering temperature of a second portion of the free layer. The first portion of the free layer is closer to the reference layer than the second portion of the free layer. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.
    Type: Application
    Filed: February 4, 2015
    Publication date: October 15, 2015
    Inventors: Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy
  • Patent number: 9130155
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a reference layer, a nonmagnetic spacer layer and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. A portion of the magnetic junction includes at least one magnetic substructure. The magnetic substructure includes at least one Fe layer and at least one nonmagnetic insertion layer. The at least one Fe layer shares at least one interface with the at least one nonmagnetic insertion layer. Each of the at least one nonmagnetic insertion layer consists of at least one of W, I, Hf, Bi, Zn, Mo, Ag, Cd, Os and In.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: September 8, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Roman Chepulskyy, Xueti Tang, Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Mohamad Towfik Krounbi
  • Patent number: 9105830
    Abstract: A magnetic memory is described. The magnetic memory includes dual magnetic junctions and spin-orbit interaction (SO) active layer(s). Each dual magnetic junction includes first and second reference layers, first and second nonmagnetic spacer layers and a free layer. The free layer is magnetic and between the nonmagnetic spacer layers. The nonmagnetic spacer layers are between the corresponding reference layers and the free layer. The SO active layer(s) are adjacent to the first reference layer of each dual magnetic junction. The SO active layer(s) exert a SO torque on the first reference layer due to a current passing through the SO active layer(s) substantially perpendicular to a direction between the SO active layer(s) and the first reference layer. The first reference layer has a magnetic moment changeable by at least the SO torque. The free layer is switchable using a spin transfer write current driven through the dual magnetic junction.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 11, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov, Mohamad Towfik Krounbi
  • Patent number: 9087633
    Abstract: A magnetic device has a contact structure including a magnetic material therein. The contact structure is magnetostatically and/or electrically coupled to a magnetic element such as one having a magnetic tunneling junction (MTJ) multilayer structure. The magnetic material included in the contact structure is configured to compensate for an offset field acting on the free layer of the magnetic element by reference layers of the magnetic element.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 21, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Dmytro Apalkov, Mohamad Towfik Krounbi
  • Patent number: 9076541
    Abstract: A magnetic memory includes memory array tiles (MATs), intermediate circuitry, global bit lines and global circuitry. Each MAT includes bit lines, word lines, and magnetic storage cells having magnetic junction(s), selection device(s) and at least part of a spin-orbit interaction (SO) active layer adjacent to the magnetic junction(s). The SO active layer exerts a SO torque on the magnetic junction(s) due to a preconditioning current passing through the SO active layer. The magnetic junction(s) are programmable using write current(s) driven through the magnetic junction(s) and the preconditioning current. The bit and word lines correspond to the magnetic storage cells. The intermediate circuitry controls read and write operations within the MATs. Each global bit line corresponds to a portion of the MATs. The global circuitry selects and drivesportions of the global bit lines for read operations and write operations.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: July 7, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Adrian E. Ong, Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov
  • Patent number: 9076537
    Abstract: A magnetic memory is described. The magnetic memory includes magnetic junctions and at least one spin-orbit interaction (SO) active layer. Each of the magnetic junctions includes a data storage layer that is magnetic. The SO active layer(s) are adjacent to the data storage layer of the magnetic junction. The at SO active layer(s) are configured to exert a SO torque on the data storage layer due to a current passing through the at least one SO active layer in a direction substantially perpendicular to a direction between the at least one SO active layer and the data storage layer of a magnetic junction of the plurality of magnetic junctions closest to the at least one SO active layer. The data storage layer is configured to be switchable using at least the SO torque.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: July 7, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov
  • Patent number: 9076954
    Abstract: A magnetic memory is described. In one aspect, the magnetic memory includes magnetic junctions and at least one semi-spin valve (SSV) line adjacent to the magnetic junctions. Each magnetic junction includes a magnetic free layer. The SSV line(s) include a ferromagnetic layer and a nonmagnetic layer between the ferromagnetic layer and the magnetic junctions. The SSV line(s) are configured to exert a spin accumulation induced torque on at least a portion of the magnetic junctions due to an accumulation of spin polarized current carriers from a current that is substantially in-plane. The free layer is configured to be written using at least the spin accumulation induced torque. In another aspect, the magnetic memory includes magnetic memory cells and at least one spin torque (ST) line that is analogous to the SSV line. Each magnetic memory cell includes magnetic junction(s) analogous to those above and magnetoelectric selection device(s).
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: July 7, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Alexey Vasilyevitch Khvalkovskiy, Dmytro Apalkov, Vladimir Nikitin, Mohamad Towfik Krounbi