Patents by Inventor Alexis Christine Komor

Alexis Christine Komor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348883
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cpf1 or variants thereof, and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a napDNAbp (e.g., CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute) and nucleic acid editing proteins or domains, are provided.
    Type: Application
    Filed: December 15, 2022
    Publication date: November 2, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Liwei Chen, Holly A. Rees
  • Publication number: 20220220462
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing proteins or domains, are provided.
    Type: Application
    Filed: November 15, 2021
    Publication date: July 14, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Holly A. Rees, Yongjoo Kim
  • Publication number: 20220119785
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: August 20, 2021
    Publication date: April 21, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Patent number: 11268082
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cpf1 or variants thereof, and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a napDNAbp (e.g., CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute) and nucleic acid editing proteins or domains, are provided.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: March 8, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Liwei Chen, Holly A. Rees
  • Patent number: 11214780
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing proteins or domains, are provided.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: January 4, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Holly A. Rees, Yongjoo Kim
  • Patent number: 11124782
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: September 21, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Patent number: 11053481
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 6, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Patent number: 10465176
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: November 5, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Publication number: 20190322992
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 24, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Patent number: 10167457
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing proteins or domains, are provided.
    Type: Grant
    Filed: October 22, 2016
    Date of Patent: January 1, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Holly A. Rees, Yongjoo Kim
  • Publication number: 20180312825
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing proteins or domains, are provided.
    Type: Application
    Filed: April 23, 2018
    Publication date: November 1, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Holly A. Rees, Yongjoo Kim
  • Publication number: 20180312828
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cpf1 or variants thereof, and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a napDNAbp (e.g., CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute) and nucleic acid editing proteins or domains, are provided.
    Type: Application
    Filed: March 23, 2018
    Publication date: November 1, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Liwei Chen, Holly A. Rees
  • Patent number: 9840699
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: December 12, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Publication number: 20170121693
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing proteins or domains, are provided.
    Type: Application
    Filed: October 22, 2016
    Publication date: May 4, 2017
    Inventors: David R. Liu, Alexis Christine Komor, Holly A. Rees, Yongjoo Kim
  • Publication number: 20160304846
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: December 12, 2014
    Publication date: October 20, 2016
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Patent number: 9068179
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a nucleic acid encoding a mutant Presenilin1 protein to correct a point mutation associated with a disease or disorder, e.g., with familial Alzheimer's disease. The methods provided are useful for correcting a PSEN1 point mutation within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: June 30, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Publication number: 20150165054
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a nucleic acid encoding a mutant Caspase-9 protein to correct a point mutation associated with a disease or disorder, e.g., with neuroblastoma. The methods provided are useful for correcting a Caspase-9 point mutation within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 18, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Publication number: 20150166980
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 18, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Publication number: 20150166981
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 18, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor
  • Publication number: 20150166983
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a nucleic acid encoding a mutant Presenilin1 protein to correct a point mutation associated with a disease or disorder, e.g., with familial Alzheimer's disease. The methods provided are useful for correcting a PSEN1 point mutation within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 18, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor