Patents by Inventor Alexis Sauer

Alexis Sauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180110404
    Abstract: Disclosed herein is an aspiration assembly for attaching to an endoscope. The aspiration assembly comprises an extendable suction tube for aspirating an object (e.g., smoke, blood, blood clot, bone debris, or tissue debris) at or near a surgical site during an endoscopic surgery. The aspiration assembly can further comprise an irrigation tube for directing a fluid to the surgical site for cleaning the endoscope lens. By integrating an extendable suction tube with the endoscope, the technology described herein obviate the need for instrument switching and/or multiple surgeons during the surgery.
    Type: Application
    Filed: April 15, 2016
    Publication date: April 26, 2018
    Applicants: TRUSTEES OF BOSTON UNIVERSITY, BOSTON MEDICAL CENTER CORPORATION, FRAUNHOFER USA, INC.
    Inventors: Anand DEVAIAH, Andre SHARON, Alexis SAUER-BUDGE, Holger WIRZ, Yuzhang YANG, Stephanus Johannes Marcellis VAN DER KEMP, Daniel ECHEVERRIA
  • Publication number: 20160136658
    Abstract: The present invention relates to methods, devices and systems for separation and concentration of particles from liquid and fluid samples. In some embodiments, the separation/concentration is achieved by sequential centrifugation steps. In particular, one aspect of the invention relates to a separation/concentration device which comprises at least a first chamber and a second chamber connected by a first valve, whereby operation of the first valve controls the material transfer from the first chamber to the second chamber. In some embodiments, valve operation can be manually, semi-manually or automatically. Other aspects of the invention relate to single- or multi-chambered separation/concentrator devices, and methods and systems for use. Other aspects of the invention relate to devices for operation of the valves, e.g., semi-manual actuation devices, and automatic inertial activation devices and mechanical actuation devices present in purpose-built centrifuges.
    Type: Application
    Filed: October 20, 2015
    Publication date: May 19, 2016
    Inventors: Andre SHARON, Alexis SAUER-BUDGE, Aaron SIZE, Holger WIRZ
  • Publication number: 20160089217
    Abstract: A dental implant includes an upper connector portion and lower implantation portion, the connector portion receiving a dental crown or similar prosthesis, the implantation portion having rectangular cross section and linear vertical profile with machine taper. An outer surface of the implantation portion provides frictional fit with a correspondingly shaped surrounding bone surface. A bone removal tool includes a hand-held actuator generating high-frequency, small-amplitude vibration, and an attached metal tool tip having elongated head portion and curved neck portion. The head portion has rectangular cross section and linear taper, and an outer surface of the head portion has a saw-toothed grinding pattern for removing bone. The neck portion is dimensioned and configured to establish mechanical resonance of the tool tip including axial reciprocating action of the head portion in response to the actuator vibration.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 31, 2016
    Inventors: Robert Gyurko, Serge Dibart, Andre Sharon, Alexis Sauer-Budge, Holger Wirz
  • Publication number: 20160000413
    Abstract: Devices for performing fine-needle aspiration of tissue and methods of using the same are disclosed. The device includes a syringe including a fiber optic probe, a plunger, and a needle and a holder including a coupling mechanism, a first actuator, and a second actuator. The fiber optic probe is configured to move within a lumen of the needle and is guided into the needle by a fiber optic channel. The plunger is configured to create a vacuum in the needle.
    Type: Application
    Filed: January 30, 2014
    Publication date: January 7, 2016
    Inventors: John C. BRIGGS, Andre SHARON, Alexis SAUER-BUDGE, David CHARGIN, Irving BIGIO, Jennifer ROSEN, Ousama A'AMAR, Aaron SIZE, Stephanie LEE
  • Patent number: 9199250
    Abstract: The present invention relates to methods, devices and systems for separation and concentration of particles from liquid and fluid samples. In some embodiments, the separation/concentration is achieved by sequential centrifugation steps. In particular, one aspect of the invention relates to a separation/concentration device which comprises at least a first chamber (101) and a second chamber (103) connected by a first valve (111), whereby operation of the first valve controls the material transfer from the first chamber to the second chamber. In some embodiments, valve operation can be manually, semi-manually or automatically. Other aspects of the invention relate to single- or multi-chambered separation/concentrator devices, and methods and systems for use. Other aspects of the invention relate to devices for operation of the valves, e.g., semi-manual actuation devices, and automatic inertial activation devices and mechanical actuation devices present in purpose-built centrifuges.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: December 1, 2015
    Assignees: Trustees of Boston University, Fraunhofer USA, Inc.
    Inventors: Andre Sharon, Alexis Sauer-Budge, Aaron Size, Holger Wirz
  • Patent number: 9046483
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: June 2, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Timothy J. Denison, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Patent number: 8986528
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Timothy J. Denison, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Publication number: 20140273046
    Abstract: Described herein is a method and a device for expediting delivery of an agent to a damaged bacterial cell. In one embodiment, the methods and devices are useful for screening candidate antibiotics. In another embodiment, the methods and devices described herein are used to determine susceptibility of bacteria to an antibiotic. The methods also provide a method for determining an appropriate antibiotic to treat an individual having a bacterial infection.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicants: Trustees of Boston University, Fraunhofer USA, INC.
    Inventors: Alexis Sauer-Budge, Andre Sharon, Maxim Kalashnikov, Holger Wirz
  • Patent number: 8785148
    Abstract: Described herein is a method and a device for expediting delivery of an agent to a damaged bacterial cell. In one embodiment, the methods and devices are useful for screening candidate antibiotics. In another embodiment, the methods and devices described herein are used to determine susceptibility of bacteria to an antibiotic. The methods also provide a method for determining an appropriate antibiotic to treat an individual having a bacterial infection.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 22, 2014
    Assignees: Fraunhofer, USA, Inc., Trustees of Boston University
    Inventors: Alexis Sauer-Budge, Andre Sharon, Maxim Kalashnikov, Holger Wirz
  • Publication number: 20130313112
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Application
    Filed: August 8, 2013
    Publication date: November 28, 2013
    Applicant: President and Fellows of Harvard College
    Inventors: Timothy J. DENISON, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Publication number: 20130270115
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 17, 2013
    Inventors: Timothy J. DENISON, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Publication number: 20120122831
    Abstract: Described herein is a method and a device for expediting delivery of an agent to a damaged bacterial cell. In one embodiment, the methods and devices are useful for screening candidate antibiotics. In another embodiment, the methods and devices described herein are used to determine susceptibility of bacteria to an antibiotic. The methods also provide a method for determining an appropriate antibiotic to treat an individual having a bacterial infection.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 17, 2012
    Applicants: FRAUNHOFER USA, INC., TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Alexis Sauer-Budge, Andre Sharon, Maxim Kalashnikov, Holger Wirz
  • Publication number: 20120115705
    Abstract: The present invention relates to methods, devices and systems for separation and concentration of particles from liquid and fluid samples. In some embodiments, the separation/concentration is achieved by sequential centrifugation steps. In particular, one aspect of the invention relates to a separation/concentration device which comprises at least a first chamber (101) and a second chamber (103) connected by a first valve (111), whereby operation of the first valve controls the material transfer from the first chamber to the second chamber. In some embodiments, valve operation can be manually, semi-manually or automatically. Other aspects of the invention relate to single- or multi-chambered separation/concentrator devices, and methods and systems for use. Other aspects of the invention relate to devices for operation of the valves, e.g., semi-manual actuation devices, and automatic inertial activation devices and mechanical actuation devices present in purpose-built centrifuges.
    Type: Application
    Filed: April 30, 2010
    Publication date: May 10, 2012
    Applicants: Fraunhofer USA, Inc., Trustees of Boston University
    Inventors: Andre Sharon, Alexis Sauer-Budge, Aaron Size, Holger Wirz
  • Publication number: 20120077260
    Abstract: The present invention relates generally to the control of fluid flow rate and direction on a microfluidic device. In particular, the present invention provides an integrated valveless microfluidic device, where directional fluid control is controlled using off-chip remote valve switching and fluid flow rate changes are controlled using on-chip flow-rate changing fluid reservoirs. The present invention provides methods and systems for directional fluid control and control of fluid flow rate in an integrated microfluidic device which enables processes with different flow rates to be performed on one device without the need of on-chip valves.
    Type: Application
    Filed: March 30, 2010
    Publication date: March 29, 2012
    Applicants: Fraunhofer USA, Inc., Trustees of Boston University
    Inventors: Andre Sharon, David A. Chargin, Paul Mirsky, Alexis Sauer-Budge
  • Publication number: 20110313145
    Abstract: Disclosed herein are methods for purification of RNA from a sample. The RNA can be total RNA or mRNA. The method involves preparing the sample in a solution of lysis buffer and depositing into a first end of a lysis straw such that the sample solution flows through the matrix of the lysis straw and is eluted from the opposite end of the lysis straw, and depositing the eluted material into a first end of a solid phase extraction (SPE) straw, such that the deposited solution flows through the matrix of the SPE straw towards the opposite end of the SPE straw, and eluting the RNA from the SPE straw by depositing a solution of elution buffer, into the first end of the SPE straw, such that the deposited solution flows through the matrix of the SPE straw and is eluted from the opposite end of the SPE straw, wherein purified RNA from the sample is present in the eluate of the SPE straw.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 22, 2011
    Applicants: FRAUNHOFER USA, INC., TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Andre Sharon, Anirban Chatterjee, Paul Mirsky, Alexis Sauer-Budge
  • Publication number: 20070117214
    Abstract: Methods and apparatuses for performing assays involving binding material elements with a plurality of bonds over a substantial area of a surface of a resonant device establishing a normalized exposure. The methods and apparatuses also involve controlling an external influence applied to the material elements over a first period of time and measuring a signal during a second period of time that is indicative of the change in the amount of material elements bound to the surface relative to the normalized exposure. In some cases, the measured signals are integrated with respect to time to determine the time averaged amount of material elements bound to the surface.
    Type: Application
    Filed: May 2, 2006
    Publication date: May 24, 2007
    Applicant: BioScale, Inc.
    Inventors: Brett Masters, Michael Miller, Alexis Sauer-Budge
  • Publication number: 20070037231
    Abstract: Methods for detecting bacteria are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the bacteria, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Application
    Filed: May 2, 2006
    Publication date: February 15, 2007
    Applicant: BioScale, Inc.
    Inventors: Alexis Sauer-Budge, Eric Fitch, Brett Masters, Michael Miller, Mark Lundstrom
  • Publication number: 20070037142
    Abstract: Methods for detecting viruses are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the virus, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Application
    Filed: May 2, 2006
    Publication date: February 15, 2007
    Applicant: BioScale, Inc.
    Inventors: Alexis Sauer-Budge, Brett Masters, Michael Miller, Mark Lundstrom
  • Patent number: 6673615
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: January 6, 2004
    Assignee: President and Fellows of Harvard College
    Inventors: Timothy J. Denison, Alexis Sauer, Jene Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Publication number: 20030044816
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Application
    Filed: February 20, 2002
    Publication date: March 6, 2003
    Inventors: Timothy J. Denison, Alexis Sauer, Jene Golovchenko, Amit Meller, Eric Brandin, Daniel Branton