Patents by Inventor Alexis SKUBICH

Alexis SKUBICH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230295777
    Abstract: A manufacturing process for obtaining extruded products made from a 6xxx aluminium alloy, wherein the said manufacturing process comprises following steps: a) homogenizing a billet cast from said aluminium alloy; b) heating the said homogenised cast billet; c) extruding the said billet through a die to form at least a solid or hollow extruded product; d) quenching the extruded product down to room temperature; e) optionally stretching the extruded product to obtain a plastic deformation typically between 0.5% and 5%; f) ageing the extruded product without applying on the extruded product any separate post-extrusion solution heat treatment between steps d) and f). characterised in that: i) the heating step b) is a solution heat treatment where: b1) the cast billet is heated to a temperature between Ts-15° C. and Ts, wherein Ts is the solidus temperature of the said aluminium alloy; b2) the billet is cooled until billet mean temperature reaches a value between 400° C. and 480° C.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Inventors: Alexis SKUBICH, Martin JARRETT
  • Publication number: 20230227953
    Abstract: The present invention relates to extrusions for structural components, such as bumper, side impact beam, seat sill in vehicles and more particularly to a method for optimizing strength and energy absorption of 6XXX aluminium alloys extrusions by variations in thermomechanical ageing (TMA) consisting in i) an artificial preageing treatment with a duration t1 at a temperature T1 selected to increase the yield strength of said extrusion between 5% and 20%, said temperature T1 being typically between 120° C. and 180° C. and said duration t1 being typically between 1 and 100 hours, to obtain an artificially preaged extrusion, ii) a plastic deformation of said artificially preaged extrusion between 1% and 80% to obtain a deformed extrusion, iii) a final artificial ageing treatment of said deformed extrusion with a duration t2 at a temperature T2, said temperature T2 being typically between 140° C. and 200° C. and said the duration t2 being typically between 1 and 100 hours.
    Type: Application
    Filed: January 18, 2023
    Publication date: July 20, 2023
    Inventors: Emmanuel BESLIN, Jochen FRANK, Martin JARRETT, Alexis SKUBICH, Arnas Gerald FITZNER
  • Patent number: 11697866
    Abstract: A manufacturing process for obtaining extruded products made from a 6xxx aluminium alloy, wherein the said manufacturing process comprises following steps: a) homogenizing a billet cast from said aluminium alloy; b) heating the said homogenised cast billet; c) extruding the said billet through a die to form at least a solid or hollow extruded product; d) quenching the extruded product down to room temperature; e) optionally stretching the extruded product to obtain a plastic deformation typically between 0.5% and 5%; f) ageing the extruded product without applying on the extruded product any separate post-extrusion solution heat treatment between steps d) and f). characterised in that: i) the heating step b) is a solution heat treatment where: b1) the cast billet is heated to a temperature between Ts-15° C. and Ts, wherein Ts is the solidus temperature of the said aluminium alloy; b2) the billet is cooled until billet mean temperature reaches a value between 400° C. and 480° C.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: July 11, 2023
    Assignee: CONSTELLIUM SINGEN GmbH
    Inventors: Alexis Skubich, Martin Jarrett
  • Patent number: 11479838
    Abstract: The invention relates to a manufacturing process for obtaining 6xxx-series aluminium alloy solid extruded products, comprising Si: 0.3-1.7 wt. %; Mg: 0.1-1.4 wt. %, Cu: 0.1-0.8 wt. %, Zn 0.005-0.7 wt %, one or more dispersoid element, from the group consisting of Mn 0.15-1 wt. %, Cr 0.05-0.4 wt. % and Zr 0.05-0.25 wt. %, Fe at most 0.5 wt. %, other elements at most 0.05 wt. % the rest being aluminium, having particularly high mechanical properties, typically an ultimate tensile strength higher than 400 MPa, preferably 430 MPa, and more preferably 450 MPa without the need for a post-extrusion solution heat treatment operation. The invention also concerns a manufacturing process for obtaining a bumper system in which is integrated a towing eye, said towing eye being made with said high mechanical properties aluminium alloys.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: October 25, 2022
    Assignee: CONSTELLIUM SINGEN GmbH
    Inventors: Alexis Skubich, Martin Jarrett, Fabian Pfaender, Ivan Grbavac, Matthias Kutscher, Frank Gensty, Roland Tirard-Collet
  • Patent number: 11186903
    Abstract: An aluminium alloy extruded product obtained by casting a billet from a 6xxx aluminium alloy comprising: Si: 0.3-1.5 wt. %; Fe: 0.1-0.3 wt. %; Mg: 0.3-1.5 wt. %; Cu<1.5 wt. %; Mn<1.0%; Zr<0.2 wt. %; Cr<0.4 wt. %; Zn<0.1 wt. %; Ti<0.2 wt. %, V<0.2 wt. %, the rest being aluminium and inevitable impurities; Wherein an ageing treatment is applied such that the product presents an excellent compromise between strength and crashability, with a yield strength Rp0.2 higher than 240 MPa, preferably higher than 280 MPa and when axially compressed, the profile presents a regularly folded surface having cracks with a maximal length of 10 mm, preferably less than 5 mm.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: November 30, 2021
    Assignees: CONSTELLIUM VALAIS SA, CONSTELLIUM SINGEN GMBH
    Inventors: Alexis Skubich, Martin Jarrett
  • Publication number: 20210238721
    Abstract: The invention relates to an extruded product made of 6xxx aluminium alloy comprising 0.40-0.80 wt. % Si, 0.40-0.80 wt. % Mg, 0.40-0.70 wt. % Cu, up to 0.4 wt. % Fe, up to 0.30 wt. % Mn, up to 0.2 wt. % Cr, up to 0.2 wt. % V, up to 0.14 wt. % Zr, up to 0.1 wt. % Ti, up to 0.05 wt. % each impurity and total 0.15 wt. %, remainder aluminum, wherein the ratio Mg/Sifree is between 0.8 and 1.2 where Sifree is calculated according to the equation Sifree=Si?0.3*(Mn+Fe) where Si, Mn and Fe correspond to the content in weight % of Si, Mn and Fe of said 6xxx aluminum alloy and to the corresponding extruded product particularly suitable with a tensile yield strength higher than 280 MPa, and excellent crash properties. The invention also relates to the manufacturing process to obtain such extruded product.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 5, 2021
    Inventors: Paula CAMEAN QUEIJO, Mehdi BEN TAHAR, Alexis SKUBICH, Martin JARRETT
  • Publication number: 20200308681
    Abstract: The present invention relates to extrusions for structural components, such as bumper, side impact beam, seat sill in vehicles and more particularly to a method for optimizing strength and energy absorption of 6XXX aluminium alloys extrusions by variations in thermomechanical ageing (TMA) consisting in i) an artificial preageing treatment with a duration t1 at a temperature T1 selected to increase the yield strength of said extrusion between 5% and 20%, said temperature T1 being typically between 120° C. and 180° C. and said duration t1 being typically between 1 and 100 hours, to obtain an artificially preaged extrusion, ii) a plastic deformation of said artificially preaged extrusion between 1% and 80% to obtain a deformed extrusion, iii) a final artificial ageing treatment of said deformed extrusion with a duration t2 at a temperature T2, said temperature T2 being typically between 140° C. and 200° C. and said the duration t2 being typically between 1 and 100 hours.
    Type: Application
    Filed: October 19, 2017
    Publication date: October 1, 2020
    Inventors: Emmanuel BESLIN, Jochen FRANK, Martin JARRETT, Alexis SKUBICH, Arnas Gerald FITZNER
  • Publication number: 20180171449
    Abstract: The invention relates to a manufacturing process for obtaining 6xxx-series aluminium alloy solid extruded products, comprising Si: 0.3-1.7 wt. %; Mg: 0.1-1.4 wt. %, Cu: 0.1-0.8 wt. %, Zn 0.005-0.7 wt %, one or more dispersoid element, from the group consisting of Mn 0.15-1 wt. %, Cr 0.05-0.4 wt. % and Zr 0.05-0.25 wt. %, Fe at most 0.5 wt. %, other elements at most 0.05 wt. % the rest being aluminium, having particularly high mechanical properties, typically an ultimate tensile strength higher than 400 MPa, preferably 430 MPa, and more preferably 450 MPa without the need for a post-extrusion solution heat treatment operation. The invention also concerns a manufacturing process for obtaining a bumper system in which is integrated a towing eye, said towing eye being made with said high mechanical properties aluminium alloys.
    Type: Application
    Filed: June 14, 2016
    Publication date: June 21, 2018
    Inventors: Alexis SKUBICH, Martin JARRETT, Fabian PFAENDER, Ivan GRBAVAC, Matthias KUTSCHER, Frank GENSTY, Roland TIRARD-COLLET
  • Publication number: 20170314113
    Abstract: An aluminium alloy forged product obtained by casting a billet from a 6xxx aluminium alloy comprising: Si: 0.7-1.3 wt. %; Fe: <0.5 wt. %; Cu: 0.1-1.5 wt. %; Mn: 0.4-1.0 wt. %; Mg: 0.6-1.2 wt. %; Cr: 0.05-0.25 wt. %; Zr: 0.05-0.2 wt. %; Zn: <0.2 wt. %; Ti: <0.2 wt. %, the rest being aluminium and inevitable impurities. The product optionally has an ultimate tensile strength higher than 400 MPa.
    Type: Application
    Filed: November 2, 2015
    Publication date: November 2, 2017
    Inventors: Alexis SKUBICH, Martin JARRETT, Marc BERTHERAT
  • Publication number: 20170306465
    Abstract: An aluminium alloy extruded product obtained by casting a billet from a 6xxx aluminium alloy comprising: Si: 0.3-1.5 wt. %; Fe: 0.1-0.3 wt. %; Mg: 0.3-1.5 wt. %; Cu<1.5 wt. %; Mn<1.0%; Zr<0.2 wt. %; Cr<0.4 wt. %; Zn<0.1 wt. %; Ti<0.2 wt. %, V<0.2 wt. %, the rest being aluminium and inevitable impurities; Wherein an ageing treatment is applied such that the product presents an excellent compromise between strength and crashability, with a yield strength Rp0.2 higher than 240 MPa, preferably higher than 280 MPa and when axially compressed, the profile presents a regularly folded surface having cracks with a maximal length of 10 mm, preferably less than 5 mm.
    Type: Application
    Filed: September 2, 2015
    Publication date: October 26, 2017
    Applicants: CONSTELLIUM VALAIS SA, CONSTELLIUM SINGEN GMBH
    Inventors: Alexis SKUBICH, Martin JARRETT
  • Publication number: 20160304994
    Abstract: A manufacturing process for obtaining extruded products made from a 6xxx aluminium alloy, wherein the said manufacturing process comprises following steps: a) homogenizing a billet cast from said aluminium alloy; b) heating the said homogenised cast billet; c) extruding the said billet through a die to form at least a solid or hollow extruded product; d) quenching the extruded product down to room temperature; e) optionally stretching the extruded product to obtain a plastic deformation typically between 0.5% and 5%; f) ageing the extruded product without applying on the extruded product any separate post-extrusion solution heat treatment between steps d) and f). characterised in that: i) the heating step b) is a solution heat treatment where: b1) the cast billet is heated to a temperature between Ts-15° C. and Ts, wherein Ts is the solidus temperature of the said aluminium alloy; b2) the billet is cooled until billet mean temperature reaches a value between 400° C. and 480° C.
    Type: Application
    Filed: November 27, 2014
    Publication date: October 20, 2016
    Inventors: Alexis SKUBICH, Martin JARRETT