Patents by Inventor Alf Olsen

Alf Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11649806
    Abstract: A method of installing a wind turbine generator onto a floating foundation. The floating foundation has variable buoyancy and is pre-ballasted to float at a predetermined vertical position before installation of a wind turbine generator component onto the floating foundation. A wind turbine generator component supported by lifting equipment is brought towards the floating foundation until contact is made with the floating foundation. Ballast is removed from the floating foundation to increase the buoyancy of the floating foundation such that weight of the wind turbine generator component supported by the floating foundation is increased from substantially zero to substantially the entire weight of the wind turbine generator component. The vertical position of the floating foundation is substantially unchanged during transferring weight of the wind turbine generator component onto the floating foundation.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: May 16, 2023
    Assignee: Vestas Wind Systems A/S
    Inventor: Alf Olsen
  • Publication number: 20210355917
    Abstract: A method of installing a wind turbine generator onto a floating foundation. The floating foundation has variable buoyancy and is pre-ballasted to float at a predetermined vertical position before installation of a wind turbine generator component onto the floating foundation. A wind turbine generator component supported by lifting equipment is brought towards the floating foundation until contact is made with the floating foundation. Ballast is removed from the floating foundation to increase the buoyancy of the floating foundation such that weight of the wind turbine generator component supported by the floating foundation is increased from substantially zero to substantially the entire weight of the wind turbine generator component. The vertical position of the floating foundation is substantially unchanged during transferring weight of the wind turbine generator component onto the floating foundation.
    Type: Application
    Filed: September 2, 2019
    Publication date: November 18, 2021
    Inventor: Alf Olsen
  • Patent number: 9071762
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 30, 2015
    Assignees: MICRON TECHNOLOGY, INC., GIVEN IMAGING LTD.
    Inventors: Alf Olsen, Espen A. Olsen, Jørgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Publication number: 20140022368
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Application
    Filed: September 25, 2013
    Publication date: January 23, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Alf Olsen, Espen A. Olsen, Jørgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Patent number: 8547476
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Alf Olsen, Espen A. Olsen, Jorgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Patent number: 8469152
    Abstract: Methods and systems for a multi-capacity vehicle lift system are provided. The system includes a lift assembly having a plurality of lift capacities and a load platform coupled to the lift assembly. The load platform includes a plurality of lift starting positions, each of the plurality of lift starting positions corresponding to a respective one of the plurality of lift capacities.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: June 25, 2013
    Assignee: Hunter Engineering Company
    Inventors: Michael Alf Olsen, Michael David Gerdes, Peter N. Liebetreu
  • Publication number: 20120154563
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Application
    Filed: February 23, 2012
    Publication date: June 21, 2012
    Inventors: Alf Olsen, Espen A. Olsen, Jorgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Patent number: 8149326
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 3, 2012
    Assignees: Micron Technology, Inc., Given Imaging, Ltd.
    Inventors: Alf Olsen, Espen A. Olsen, Jorgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Patent number: 7898316
    Abstract: A system which operates to determine temperature of an image sensor using the same signal chain that is used to detect the image sensor actual outputs. A correlated double sampling circuit is used to obtain the image outputs. That's same correlated double sampling circuit is used to receive two different inputs from the temperature circuit, and to subtract one from the other. The temperature output can be perceived, for example, once each frame.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: March 1, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Per Olaf Pahr, Alf Olsen, Eric R. Fossum
  • Patent number: 7782383
    Abstract: Methods and circuits for reducing noise for a passive pixel sensor (PPS) array of an image sensor are described. A noise reduction circuit includes a noise reduction integrator circuit configured to detect a potential voltage of a column line of the PPS array and generate a potential voltage substantially equal to the potential voltage of the column line. The noise reduction circuit also includes a conductor line oriented longitudinally along the column line and configured to receive the generated potential voltage from the noise reduction integrator circuit. The conductor line is placed at a potential voltage that is the same as the potential voltage of the column line. A parasitic capacitance formed between the conductor line and the column line is substantially reduced.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: August 24, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Alf Olsen, Espen A Olsen
  • Publication number: 20100073512
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 25, 2010
    Inventors: Alf Olsen, Espen A. Olsen, Jorgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Patent number: 7652243
    Abstract: Signals from an imager pixel photodetector are received by an amplifier having capacitive feedback, such as a capacitive transimpedance amplifier (CTIA). The amplifier can be operated at a low or no power level during an integration period of a photodetector to reduce power dissipation. The amplifier can be distributed, with an amplifier element within each pixel of an array and with amplifier output circuitry outside the pixel array. The amplifier can be a single ended cascode amplifier, a folded cascode amplifier, a differential input telescopic cascode amplifier, or other configuration. The amplifier can be used in pixel configurations where the amplifier is directly connected to the photodetector, or in configurations which use a transfer transistor to couple signal charges to a floating diffusion node with the amplifier being coupled to the floating diffusion node.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: January 26, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Alf Olsen, Eric R. Fossum, Giuseppe Rossi
  • Patent number: 7649559
    Abstract: Methods, devices, and systems for offset cancellation in an amplifier are disclosed, wherein the amplifier inputs may be exposed to large loads from an array of pixel columns coupled in parallel. During a cancellation phase, an amplifier offset may be canceled by selectively coupling a first amplifier output to a first amplifier input and a second amplifier output to a second amplifier input. During a portion of the cancellation phase, a buffer may use the first amplifier input to drive a first pixel signal. During a different portion of the cancellation phase, the buffer may use the second amplifier input to drive a second pixel signal. To sense the pixel columns during an amplification phase, the first and second pixel signals are coupled to the first and second amplifier inputs, respectively, with the result that the amplifier offset and the buffer offset are cancelled from the amplifier output.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: January 19, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: Alf Olsen
  • Publication number: 20090266976
    Abstract: Signals from an imager pixel photodetector are received by an amplifier having capacitive feedback, such as a capacitive transimpedance amplifier (CTIA). The amplifier can be operated at a low or no power level during an integration period of a photodetector to reduce power dissipation. The amplifier can be distributed, with an amplifier element within each pixel of an array and with amplifier output circuitry outside the pixel array. The amplifier can be a single ended cascode amplifier, a folded cascode amplifier, a differential input telescopic cascode amplifier, or other configuration. The amplifier can be used in pixel configurations where the amplifier is directly connected to the photodetector, or in configurations which use a transfer transistor to couple signal charges to a floating diffusion node with the amplifier being coupled to the floating diffusion node.
    Type: Application
    Filed: December 15, 2008
    Publication date: October 29, 2009
    Inventors: Alf Olsen, Eric R. Fossum, Giuseppe Rossi
  • Patent number: 7605852
    Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: October 20, 2009
    Assignees: Micron Technology, Inc., Given Imaging Ltd.
    Inventors: Alf Olsen, Espen A. Olsen, Jorgen Moholt, Steinar Iversen, Dov Avni, Arkady Glukhovsky
  • Publication number: 20090078509
    Abstract: Methods and systems for a multi-capacity vehicle lift system are provided. The system includes a lift assembly having a plurality of lift capacities and a load platform coupled to the lift assembly. The load platform includes a plurality of lift starting positions, each of the plurality of lift starting positions corresponding to a respective one of the plurality of lift capacities.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 26, 2009
    Inventors: Michael Alf Olsen, Michael David Gerdes, Peter N. Liebetreu
  • Patent number: 7473883
    Abstract: Signals from an imager pixel photodetector are received by an amplifier having capacitive feedback, such as a capacitive transimpedance amplifier (CTIA). The amplifier can be operated at a low or no power level during an integration period of a photodetector to reduce power dissipation. The amplifier can be distributed, with an amplifier element within each pixel of an array and with amplifier output circuitry outside the pixel array. The amplifier can be a single ended cascode amplifier, a folded cascode amplifier, a differential input telescopic cascode amplifier, or other configuration. The amplifier can be used in pixel configurations where the amplifier is directly connected to the photodetector, or in configurations which use a transfer transistor to couple signal charges to a floating diffusion node with the amplifier being coupled to the floating diffusion node.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: January 6, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Alf Olsen, Eric R. Fossum, Giuseppe Rossi
  • Publication number: 20080309800
    Abstract: Methods and circuits for reducing noise for a passive pixel sensor (PPS) array of an image sensor are described. A noise reduction circuit includes a noise reduction integrator circuit configured to detect a potential voltage of a column line of the PPS array and generate a potential voltage substantially equal to the potential voltage of the column line. The noise reduction circuit also includes a conductor line oriented longitudinally along the column line and configured to receive the generated potential voltage from the noise reduction integrator circuit. The conductor line is placed at a potential voltage that is the same as the potential voltage of the column line. A parasitic capacitance formed between the conductor line and the column line is substantially reduced.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 18, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Alf Olsen, Espen A Olsen
  • Publication number: 20080074521
    Abstract: Methods, devices, and systems for offset cancellation in an amplifier are disclosed, wherein the amplifier inputs may be exposed to large loads from an array of pixel columns coupled in parallel. During a cancellation phase, an amplifier offset may be canceled by selectively coupling a first amplifier output to a first amplifier input and a second amplifier output to a second amplifier input. During a portion of the cancellation phase, a buffer may use the first amplifier input to drive a first pixel signal. During a different portion of the cancellation phase, the buffer may use the second amplifier input to drive a second pixel signal. To sense the pixel columns during an amplification phase, the first and second pixel signals are coupled to the first and second amplifier inputs, respectively, with the result that the amplifier offset and the buffer offset are cancelled from the amplifier output.
    Type: Application
    Filed: August 30, 2006
    Publication date: March 27, 2008
    Inventor: Alf Olsen
  • Publication number: 20080074525
    Abstract: A system which operates to determine temperature of an image sensor using the same signal chain that is used to detect the image sensor actual outputs. A correlated double sampling circuit is used to obtain the image outputs. That's same correlated double sampling circuit is used to receive two different inputs from the temperature circuit, and to subtract one from the other. The temperature output can be perceived, for example, once each frame.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 27, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Per Pahr, Alf Olsen, Eric Fossum